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Abstract— Industrial Internet of Things (IIoT) has become a
revolution in the smart manufacturing paradigm as it provides
pervasive connectivity, real-time data collection, and intelligent
automation of industrial systems. In IloT-enabled
manufacturing, large volumes of heterogeneous data are
constantly generated by sensors, machines, and enterprise
systems, which must be used effectively to implement the data-
driven decision support frameworks. This decision-making
process relies on machine learning, artificial intelligence, edge-
to-cloud computing, and optimization of processes, quality
control, and real-time operational decisions. Using a
manufacturing example, examine the following decision support
system paradigms: data-driven, model-driven, knowledge-
driven, document-driven, and communication-driven.
Moreover, the key issues like data heterogeneity, complexity of
integration, scalability, security, privacy, and interpretability of
the model are also discussed, which can be used to consider
creating robust, scalable, and intelligent IIoT-based data-driven
decision support systems to be used in next-generation smart
manufacturing systems
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I. INTRODUCTION

The nature of industrial manufacturing is experiencing a
paradigm change due to a rising complexity of the system, the
dynamic nature of the market, and the necessity to raise
productivity and quality [1][2]. The outdated method of
decision-making, which is mainly experience-based and
reactive, cannot be applied in the management of
contemporary  production  set-ups  [3][4][5]. With
manufacturing systems becoming more automated and
intelligent, timely and accurate decision-making based on
sound data has become a very important requirement. This has
made data-driven decision-making an essential part of the
next-generation manufacturing systems.

The I1oT is at the center of facilitating this change through
offering multi-layered connectivity and data collection across
the manufacturing settings [6][7]. At the perception layer,
sensors and embedded devices receive real-time data
concerning machine conditions, process parameters and
environmental parameters [8]. The network layer provides
reliable data transmission and communication between
physical resources and computing infrastructure as well as the
application layer to process, analyze and visualize data in
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order to make operational and strategic decisions [9][10].
Collectively, these IIoT layers create a unified ecosystem that
makes it possible to constantly monitor and exchange data
during the manufacturing lifecycle.

The hierarchical IIoT architecture, data-driven decision-
making mechanisms, systematically process raw sensor data
into measurable knowledge that can be used to make smart
and autonomous decisions [11]. information of the
interconnected sensor, machine, and system to aid smart,
quick, and correct decision-making throughout the
manufacturing activities [12][13]. Through incorporating loT,
big data analytics. Information at the perception layer is
initially preprocessed and filtered so as to provide accuracy
and reliability before being sent to the network layer to edge
or cloud-based platforms [14][15]. Advanced analytics and
models of machine learning are implemented at the
application layer to identify complicated links between
process variables, equipment behavior, and production.

Data-driven decision support frameworks based on IloT
represent a formalized method that connects data capturing,
communication, analytics, and decision implementation into a
single system [16]. The frameworks create a closed-loop
feedback, as application-layer insights form the basis of real-
time action at the physical layer [17][18]. Such frameworks
create a more responsive, reliable, and scalable industrial
manufacturing by matching IIoT layers with information-
based intelligence, and would facilitate the transition to
autonomous and resilient smart manufacturing systems.

A. Structure of the Paper

This paper is organized in the following way: Section II:
Enabling technologies for IloT-based manufacturing. Section
III Data-Driven Decision Support Systems (DSS), Section IV
Architecture of IloT-based decision support framework.
Evaluation of Literature, Section V. Conclusion and future
work are detailed in Section VI.

II. ENABLING TECHNOLOGIES FOR II0T-BASED
MANUFACTURING

The term "Internet of Things" (IoT) refers to a broad
technical notion that defines pervasive Internet connectivity,
turning commonplace items into networked gadgets.
connected digital and physical realms, a phenomenon called a
CPS. By addressing critical industrial concerns, the IIoT seeks
to improve security, privacy, and networking standards

33



Dr. M. Jain, Journal of Global Research in Electronics and Communication, 2 (1) January 2026, 33-39

without disrupting real production processes. The IoT layer is
depicted in Figure 1.
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Fig. 1. TIoT layer architecture

A. Perception Layer

The sensor layer is another name for the perception layer.
It is a combination of RFID, 2-dimensional barcodes, global
positioning system (GPS) modules, and CCTV cameras,
among other physical and sensor devices. Transportation of
raw materials, surveillance of production areas, and collection
of sensory data are all responsibilities of equipment in an
industrial setting [19]. Systems for transport, automated
guided vehicles, and industrial robots are all part of this
category of gadgets. Prospective security flaws affecting the
perception layer include node injection, manipulation,
eavesdropping, reply attacks, timing attacks, RF interference,
and node capture.

B. Network Layer

The data transmission or network layer is responsible for
receiving and sending data between servers, smart objects,
devices, sensors, networks, and other physical objects via
wired or wireless connections. It allows traffic to flow
between the network and the perception (or sensor) layer,
which is susceptible to various attacks, through the use of
protocols like as IPv4, IPv6, Wi-Fi, ZigBee, and others.
Dangerous and widely known attacks on the network layer
include MITM, Sybil, spoofing, DoS, and sinkhole threats.

C. Application Layer

Applications for the [ToT are passed down from connected
devices to users by means of the application layer. To put it
simply, it connects the end nodes to the IIoT network. Some
well-known IIoT applications include smart homes, smart
factories, and smart robotics. Smart home apps are vulnerable
to security breaches because to their inherent insecurity, which
can be found both within and externally. Application layer
security concerns include hazardous code, side-channel
attacks, cross-site scripting, and Trojan horses.

D. Processing Layer

Numerous security concerns in the multiple IIoT layers are
the primary driver behind the creation of the fourth processor
(or support layer). Due to security concerns, data cannot be
transmitted directly to the network tiers in the three-tiered
design; this layer mitigates several risks [20]. A solution to the
security problems in IloT was suggested by the fourth-level
architecture. Before transmitting data acquired to the network
levels, authentication is given precedence utilizing keys, pre-
shared secrets, and passwords. A variety of functions,
including decision-making, data storage, and algorithm
execution, are housed in its databases and servers.
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E. Industrial loT-based Enabling Technologies

Industrial IoT (IIoT)-based manufacturing uses advanced
communication technologies, smart sensors, and connected
machines to collect and analyze data in real time across
production systems. In order to showcase adaptable,
networked procedures, digital and physical technologies are
utilized. Businesses are making quick decisions all the way
through the supply chain and smart factory by using the
internet and related technologies. IloT [21]. The openness,
socialization, interoperability, and globalization of the internet
provide a solid foundation for the idea of the IoT. Data mining
and Al are two of the most efficient ways to handle and store
enormous data sets. The applications shown in Figure 2 make
use of neural networks and fuzzy logic. These applications
include data analytics/modeling, machine learning, edge and
fog computing, blockchain, and so on. The IIoT improves
operational visibility, automation, and data-driven decision-
making in contemporary manufacturing settings by
integrating edge computing, cloud computing, and data
analytics.
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Fig. 2. Industrial IoT-enabled technologies

1) Cyber-physical System

Industry 4.0's CPS is one of its main technologies. It uses
smart systems built into production equipment to link the
manufacturing sector to the real world (figure 3).
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Fig. 3. History of industrial revolutions

IoT makes it possible to connect the real world of
production to the virtual world. Computational power systems
(CPS) enable an interactive industrial environment through
networking, processing, and storage, resulting in smart
factories [22]. Looking at it from this angle, smart products
are becoming to be more and more recognized and traceable.
In order to achieve Industry 4.0's goals of providing optimal
security support across all levels of the CPS network and
protecting sensitive data while guaranteeing data anonymity,
the system must meet certain standards in terms of its
functionality, maintainability, extensibility, adaptability, and
variability.

2) Blockchain Technology

The unique properties of blockchain technology, such as
distributed qualities, durability, certainty, tamper resistance,
dependability, and built-in data origin, make it an ideal fit for
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IIoT [23]. One data structure, the blockchain, leverages
Bitcoin's distributed ledger and public key cryptography to
facilitate safe peer-to-peer network transactions [24]. A hash
value for the preceding link in the chain is referenced by each
subsequent link.

3) Fog Computing

Fog computing is regarded as an augmentation of cloud
computing, facilitating the interaction of the majority of
commercial applications and operations with the Internet of
Things (IoT) systems. In fog computing, no third parties are
involved in the execution of necessary processes in industrial
applications by means of a network of wireless and
decentralized devices [25]. In fog computing, information
technology infrastructure is used to provide online services.

4) Cloud Computing

The huge amount of data produced by IIoT needs to be
processed, analyzed, and stored on many high-speed
computers that are spread out in many places. All of the parts
of an IloT system can benefit from the computational,
networking, and storage capacities offered by cloud
computing technologies. There is a direct connection between
backend clouds and all of the associated software and
hardware [26]. There is a steady merging of IloT with Al, and
5G and other forthcoming technologies, such as VR, AR, and
MR, are finding more and more applications in business,
academia, and healthcare.

5) Edge Computing

The term "edge computing" describes a new way of
thinking about data processing that uses local nodes rather
than a centralized cloud [27]. Outline features of edge
computing include:

e Proximity: Resources for computation are situated in
close proximity to devices that generate data.

e Low latency: Processing and answers can now take
place in real-time, thanks to data transit distance
reduction.

e Bandwidth efficiency: Minimizing network strain,
only pertinent data is sent to the cloud.

o Enhanced privacy and security: Reducing exposure,
sensitive data can be processed locally.

e Autonomy: Edge devices have the capability to
function without being connected to the cloud.

o Context awareness: Improved use of context is made
possible by local processing [28].

6) Big Data Analytics

The utilization of very complicated, high-performance
computing platforms is essential for big data analysis due to
the massive amounts of data generated by IloT systems and
devices. The use of conventional data processing methods was
hindered by the considerably higher data volumes caused by
the IoT [29]. Because there are so many SThs and Eols linked
to the cloud, the ToT centers on big data and Al to derive
inferences and make judgements from sensory input. In
contrast to the usual big data challenges, [oT big data presents
its own set of challenges in terms of analysis and the
integration of various big data analytics processes.

III. TAXONOMY OF DATA-DRIVEN DECISION SUPPORT
FRAMEWORKS

Smart manufacturing's use of IoT and DSS technology,
providing an in-depth analysis of existing implementation
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approaches. With the rise of Industry 4.0, the IoT has
enormous potential to improve data-driven decision-making
and hence transform production processes [30]

A. Types of Decision Support Systems

Decision Support systems are the computerized tools
provided to the decision-making process, analyzing data,
modelling scenarios, collaboration, managing documents, or
making intelligent recommendations. They are classified into
five types

e Data-driven decision support system: Accessing and
modifying structured data, both internal and external,
is the focus of a data-driven DSS, which may also
possess time series capabilities. They include the very
basic query tools, file systems, and more complex
systems such as EIS, BI systems, and OLAP. The main
focus is to facilitate decision-making by enabling the
retrieval, analysis, and presentation of large amounts
of high-quality data.

e Model-driven decision support system: A model-
driven DSS aids in decision-making by utilizing a
variety of models, such as simulation, optimization,
and financial models. It is a special type of design
customized to analyze. Such DSS can be especially
effective at modelling real-life scenarios and are
widely applied to such objects as supply chain
management in terms of manufacturing, planning, and
logistics.

e Communication-driven decision support system: A
Communication-based DSS is based on the
exploitation of network and electronic solutions to
support the cooperation between decision-makers[31].
It places them in one environment to share data,
information, and resources to enhance decision-
making. This architecture can also be referred to as a
GDSS or a Collaborative DSS (CDSS).

e Document-driven decision support system:
Document-driven DSS. This type of DSS can be used
to manage and retrieve different electronic documents,
such as texts, photos, images, and audio/video files.
With the growth of Internet technologies. key
components, helping organizations to efficiently
locate, structure, and retrieve relevant documents for
decision-making.

e Knowledge-driven decision support system: A
knowledge-based DSS or intelligent DSS is a system
that delivers information, understanding and
propositions to assist users. It began its formation in
the context of artificial intelligence, and is constructed
on expert systems, working on rules, fuzzy logic,
genetic algorithms or neural networks. develop
effective solutions, and support decision-making
effectively, particularly in areas such as manufacturing
and scheduling.

B. Key Data-driven  decision

manufacturing

support  system in

The main idea behind a DSS and the main groups of DSSs
that work together to help people make good decisions are
shown in Figure 4. The five types of DSSs—data-driven,
model-driven, knowledge-driven, document-driven, and
communication-driven—each have their own benefits for
looking at these parts and working together to make smart
decisions.
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Fig. 4. Data-Driven Decision Support Systems (DSS)

1) Data-Driven DSS

Data distribution and management for "machine-
generated data" and "human-generated data" can be enhanced
with cloud-based big data management. Monitoring data from
sensors should be optimized for usage in real-time automated
fault identification, categorization, and root-cause detection.

2) Document-Driven DSS

Managing, retrieving, and analyzing unstructured or semi-
structured documents such as reports, manuals, emails, and
logs to support decision-making. In manufacturing, they help
extract useful information from maintenance records,
inspection reports, and technical documents. Techniques like
text mining and natural language processing enable faster
access to relevant knowledge, improving operational
decisions and problem resolution.

3) Knowledge-Driven DSS

The exchange of expert subject information between
operators and machines, as well as between managers, is
crucial in smart manufacturing. Live, data-driven DM can be
bolstered by recommendation engines and opinion mining.
Clustering and machine-user relationship mining can make
production systems more self-aware, learn better, and
maintain themselves.

4) Model-Driven DSS

The future of manufacturing depends on supply chain
management that is both integrated and technologically
advanced. Better demand forecasting and integrated
technology are also essential components of this process.
Costs can be reduced and supply network defects like sensor
failure and degradation can be identified with the use of
quantitative models and sensors.

5) Communication-Driven DSS

The increased availability of decision-making capabilities
between computers and humans can pave the way for machine
sharing in a variety of contexts and tasks. Better training of
operators and decision-makers, as well as the ability to foresee
and respond to potential issues, can result from the
development of simulation technologies [32].

IV. ARCHITECTURE OF I1O0T-BASED DECISION SUPPORT
FRAMEWORKS

A decision-support framework called the FASTEN Suite
Tool is part of the IloT design for decision support in the
manufacturing system shown in Figure 1. It is supported by an
open IIoT platform that makes sure all the system's parts can
talk to each other in both directions [33]. Factors including
manufacturing resources, business systems, and the FASTEN
Suite Tool's integration are taken into account. As seen in
Figure 5, the IloT Platform enables connectivity between
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various systems and software modules through the provision
of an Application Programming Interface (API) for broker
subscriptions.
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Fig. 5. Architecture of IloT-based decision support in manufacturing
system
e Decision support framework:  Visualization,
optimization, simulation, and real-time monitoring

capabilities.

e One for real-time monitoring and another for
predictive and prescriptive analytics. These tools can
be used either in conjunction with one another or alone,
depending on the particular application.

e The Real-Time Monitoring Tool generates reports and
dashboards using data visualized by a suite of tools.
The user interface also allows for interaction with the
tools.

e The data input for the FASTEN Suite Tool is sourced
from various sensors and corporate systems, including
but not limited to the MES and the MMS. Before being
transferred to the IIoT platform, the sensory data
collected from the industrial processes undergoes local
conditioning and pre-processing, such as sampling,
filtering, compressing, and more.

A. Challenges of lloT-based manufacturing in data driven
decision

Industry 4.0 implementations of Al-based DSS do
encounter certain challenges. Factors such as data quality,
integration complexity, and the need for robust cybersecurity
measures should be carefully considered. a number of
obstacles must be overcome:

1) Integration and Interoperability

The lack of appropriate standards in communication
networks has a significant influence on the integration of loT
devices. With the multitude of languages used in IoT hardware
development and the numerous moving components,
achieving communication interoperability has proven to be
even more challenging than the already formidable task of
implementing traditional communication interoperability.

2) Privacy

Hackers now have a multitude of new ways to take
advantage of security holes in computer systems, thanks to the
widespread use of Internet-enabled devices. Just as the
number of Internet of Things (IoT) devices connected to a
network increases, so does the attack surface [34]. This is
because there are more devices for an attacker to compromise,
making the network as a whole more vulnerable.
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3) Sensor Networks

Sensor networks are a remarkable technical development
that enables the Internet of Things. The world can be shaped
by their abilities to assess, infer, and understand
environmental indicators [35]. Efficiency and cost-
effectiveness in large-scale remote sensing.

4) Data-Related Challenges

Poor data quality, inconsistency, incompleteness, and
limited accessibility, which reduce the reliability of analysis
and decision-making. Additionally, ensuring data privacy,
security, and proper integration from multiple sources remains
a major challenge. Data Quality and Accessibility, Data
Privacy and Security, Data Governance and Compliance.

5) Reliability

Include difficulties in integrating Al systems with existing
infrastructure, lack of interoperability among technologies,
and high system complexity. Limited scalability, reliability
issues, and the need for skilled technical expertise further
hinder effective implementation. Scalability and Performance,
Interoperability and Integration, Model Interpretability and
Transparency.

6) Model interpretability and Adaptibility

High-order data-driven models, specifically machine
learning ones, are not always transparent and may not be
effective in adapting to the dynamics of operation[36]. which
restricts trust and effectiveness in the long term in industrial
decision-making.

V. LITERATURE REVIEW

The reviewed literature highlights recent of IlIoT based
manufacturing in data driven decision framework. The
summary Table I systematically organizes key research
studies, key findings, methodologies, challenges, and future
work studies are discussed below:

Tang et al. (2025) IIoT systems are inherently dynamic,
deeply embedded in physical environments, and often
embodied in autonomous agents. These characteristics
demand an Al paradigm that can continuously adapt and
generalize across heterogeneous data and tasks. IloT
infrastructure supports data collection or distributed training,
large pre-trained foundation models (FMs) can be leveraged
as a service to empower general industrial intelligence in I1oT.
a four-dimensional SCCE framework (Sensing—Computing—
Connectivity—Evolution) that systematically examines the
deployment of FMs in I1oT along the data processing pipeline
and system lifecycle [37].

S et al. (2025), proposed the IIoT has changed the game
for smart applications entirely. Despite the problem of
efficient service placement and data analytics, resource
allocation and meeting the stringent Quality of Service (QoS)
standards remain challenging in Fog-Cloud systems. Cloud
and mission-critical IToT services move closer to the edge to
reduce latency. A QoS-aware optimization approach
simplifies service placement and resource management. Real
time decisions are possible with the use of latest day in data
analytics [38].

Lv and Li (2025), IIoT devices and the need for real-time
processing in medical device production and pharmaceutical
manufacturing. a distributed healthcare-aware deep learning
resource orchestration (DH-DLRO) algorithm for edge
computing-enabled healthcare IloT flexible manufacturing
systems. a joint optimization problem for task offloading
decisions and resource allocation, specifically tailored to
healthcare manufacturing requirements. DH-DLRO maintains
consistent Quality of Service levels above 0.95 for medical
device assembly tasks while achieving optimal CPU
utilization effectiveness in balancing computational efficiency
with healthcare manufacturing quality [39].

Ojha et al. (2024) proposed a novel framework for the
adoption of DDDM in AMS to enhance its decision-making
capabilities. This framework consists of six stages:
manufacturing stage, sensing stage, data stage, knowledge
stage, decision stage, and application stage leverages big data
analytics to extract actionable, integrates CPS to create a
seamless interaction between physical and digital systems,
and employs IoT technologies for real-time data acquisition
and monitoring, decision accuracy, and response time detailed
data collection steps, preprocessing, and analysis, practical
implementation and effectiveness [26].

Gandhi (2023) A novel framework called Hybrid-sense
can optimize maintenance schedules, detect future problems,
and cut down on operational expenses and downtime. It uses
state-of-the-art machine learning and data analytics
approaches. In order to improve the accuracy of predictions,
developed a hybrid architecture that incorporates data from
multiple sources, such as operating logs, environmental
conditions, and sensor readings. This design combines classic
statistical methods with deep learning algorithms [40].

Rosati et al. (2023) DSS consists of the following
fundamental components: data gathering, feature extraction,
drawing on relevant literature, innovative method relies on a
feature extraction approach and ML prediction model. The
integration of ML into cloud-based architecture paves the way
for data analysis, cloud storage, and predictive models. to
optimize maintenance schedules and receive real-time alerts
regarding operational risks; this allows manufacturers to
decrease service costs by increasing uptime and productivity
[41].

Sergeeva, Voskobovich and Kukharenko (2022)
Optimization of processes, predictive maintenance, and real-
time decision-making in IloT-based manufacturing are all
substantially improved by IloT decision support frameworks.
the incorporation of sensor-driven architectures, big data
analytics, and machine learning; recognizing difficulties
associated with data heterogeneity, scalability, and security in
smart processing systems. The usage of natural language
processing is associated with Al and mathematical linguistics;
synthesis refers to the process of producing text that is literate.
This study examines processing methods for making
structured data accessible to Al systems by transforming
unstructured data [42].

TABLE I. SUMMARY OF LITERATURE REVIEW ON [IOT BASED MANUFACTURING IN DATA DECISION FRAMEWORK

Author Study On Key Findings Application Challenges Future Work
Tang et al. | Foundation Models (FMs) in | SCCE enables adaptive, | General industrial | Data  heterogeneity, | Lightweight FMs,
(2025) IIoT using SCCE (Sensing | generalizable Al across | intelligence, deployment cost, | continual learning,

1IoT lifecycles edge—FM co-design
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Computing Connectivity autonomous IoT | system evolution
Evolution) framework systems complexity
S et al. | QoS-aware service placement | QoS-aware optimization | Mission-critical smart | Dynamic workloads, | Al-driven real-time
(2025) and resource allocation in Fog | improves latency and | industrial applications | strict QoS constraints, | orchestration,
Cloud IIoT reliability scalability predictive QoS models
Lv & Li | Edge-enabled healthcare IloT | Maintains QoS > 0.95 | Medical device and | Real-time constraints, | Multi-objective
(2025) manufacturing  with  DH- | with  optimal CPU | pharmaceutical healthcare compliance | optimization,  cross-
DLRO utilization manufacturing factory deployment
Ojha et al. | Data-Driven Decision Making | The six-stage framework | Advanced Data  pre-processing | Automated data
(2024) (DDDM) framework for AMS | improves decision | Manufacturing complexity, CPS | pipelines, Al-enhanced
accuracy and response | Systems (AMS) integration decision layers
time
Gandhi Hybrid-sense predictive | Hybrid ML + DL | Predictive Multi-modal data | Explainable Al,
(2023) maintenance framework improves failure | maintenance in smart | fusion, model | adaptive maintenance
prediction accuracy manufacturing interpretability scheduling
Rosati et | Cloud-based ML Decision | ML-based DSS reduces | Industrial maintenance | Cloud latency, data | Edge—cloud hybrid
al. (2023) Support System for | downtime and service | optimization security, real-time | DSS, real-time
maintenance costs alerts anomaly detection
Sergeevaet | Data-driven DSS in IIoT | ML and NLP enhance | Smart manufacturing | Data heterogeneity, | Secure Al frameworks,
al. (2022) manufacturing  with  NLP | decision support from | and process | scalability, security advanced NLP for IIoT
integration heterogeneous data optimization data
V1. CONCLUSION WITH FUTURE WORK Technol. Adv., vol. 3, no. 3, pp. 154-162, 2023, doi:
. . . . 10.56472/25832646/JETA-V3I7P119.

The ereasing rf)le of data-driven decision suppprt [4] S. Phalke, Y. D. Athave, and B. N. Ilag, “A Multi-Layered
systems as an underlying component of smart manufacturing Approach to IT Infrastructure Governance and Compliance-
systems based on Industrial IoT (IloT). It is confirmed in the Security, Hardening, and Audit Readiness V3,” Int. J. Comput.
reviewed literature that the combination of layered IloT Appl., vol. 187, mo. 12, pp. 29-33, Jun. 2025, doi:
structures with advanced analytics, machine learning, 10.5120/1jca2025925133.
artificial intelligence, and edge-cloud computing can be used  [] S. Achouche, U. B. Yalamanchi, and N. Raveendran, “Method,
to support more effective real-time monitoring, predictive apparatus, and computer-readable medium for performing a data

. X L. . exchange on a data exchange framework,” Justia Patents, vol. 2,
maintenance, quality assurance, and process optimization in 2019
an 1ndu§ trial setting. De.CISlon support SySten.lS (DSSs) that are [6] S. Amrale, “Anomaly Identification in Real-Time for Predictive
data-driven, model-driven, knowledge-driven, document- Analytics in IoT Sensor Networks using Deep,” Int. J. Curr. Eng.
driven, or communication-driven provide a comprehensive Technol., vol. 14, no. 6, pp. 1-7, 2024, doi:
decision-making ecosystem that can address the strategic and 10.14741/ijcet/v.14.6.15.
operational demands of manufacturing in all its facets. [7] V. Pal, “Foundation Models for Multi-Modal Clinical Decision
Although these developments are positive, some significant Support Systems,” ESP J. Eng. Technol. Adv., vol. 2, no. 2, pp.
issues like heterogeneity of data, inability to interoperate 183-191, 2022, doi: 10.56472/25832646/JETA-V212P121.
between heterogeneous devices and platforms, vulnerability (8] S. Shah, 8. H. H. Madni, 8. Z. M. Hashim, M. Faheem, and H. M.
to cybersecurity and privacy, inability to operate at scale, and F. Shahzad, “Bridging the gap: Empowering manufacturing and
. . . o N production small medium enterprises through industrial Internet of
1nsufﬁ.01ent 1nterpretab111¥y and adaptability of the (;omplgx Things adoption model,” IET Collab. Intell. Manuf., vol. 7, no. 1,
analytical models have still not been addressed. The integrity Jan. 2025, doi: 10.1049/cim2.70021.
of intelligent decision support systems, their perceived [9] R. Patel and P. Patel, “A Survey on Al-Driven Autonomous
transparency, and their overall popularity with industry. Robots for Smart Manufacturing and Industrial Automation,”
Future research must be on designing standardized and Tech. Int. J. Eng. Res., vol. 9, no. 2, pp. 46-55, 2022, doi:
interoperable IIoT systems, data analytics that are secure and 10.56975/tijer.v9i2.158819.
do not compromise privacy, and explainable and reliable AI ~ [10]  R. Patel, “Optimizing Communication Protocols in Industrial loT
that is suited to industrial decision-making. High-level edge Edge Networks: A Review of State-of-the-Art Techniques,” /nz. J.
. . .. . . . . Adv. Res. Sci. Commun. Technol., vol. 4,no. 19, pp. 503-514, May
intelligence, dl.gl.tal. twins, and adaptlve.learmng algorithms 2023 doi: 10.48175/1JARSCT-11979B.
can fur‘Fher minimize the latency and improve the 'system 1] R, Islam, S. A. Faysal, F. Bin Shaikat, A. T. Happy, N. Bakchi,
responsiveness. Enhancing human-machine cooperation and and M. Moniruzzaman, “Integration of Industrial Internet of
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