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Abstract— Industrial Internet of Things (IIoT) has become a 

revolution in the smart manufacturing paradigm as it provides 

pervasive connectivity, real-time data collection, and intelligent 

automation of industrial systems. In IIoT-enabled 

manufacturing, large volumes of heterogeneous data are 

constantly generated by sensors, machines, and enterprise 

systems, which must be used effectively to implement the data-

driven decision support frameworks. This decision-making 

process relies on machine learning, artificial intelligence, edge-

to-cloud computing, and optimization of processes, quality 

control, and real-time operational decisions. Using a 

manufacturing example, examine the following decision support 

system paradigms: data-driven, model-driven, knowledge-

driven, document-driven, and communication-driven. 

Moreover, the key issues like data heterogeneity, complexity of 

integration, scalability, security, privacy, and interpretability of 

the model are also discussed, which can be used to consider 

creating robust, scalable, and intelligent IIoT-based data-driven 

decision support systems to be used in next-generation smart 

manufacturing systems 
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I. INTRODUCTION  

The nature of industrial manufacturing is experiencing a 
paradigm change due to a rising complexity of the system, the 
dynamic nature of the market, and the necessity to raise 
productivity and quality [1][2]. The outdated method of 
decision-making, which is mainly experience-based and 
reactive, cannot be applied in the management of 
contemporary production set-ups [3][4][5]. With 
manufacturing systems becoming more automated and 
intelligent, timely and accurate decision-making based on 
sound data has become a very important requirement. This has 
made data-driven decision-making an essential part of the 
next-generation manufacturing systems. 

The IIoT is at the center of facilitating this change through 
offering multi-layered connectivity and data collection across 
the manufacturing settings [6][7]. At the perception layer, 
sensors and embedded devices receive real-time data 
concerning machine conditions, process parameters and 
environmental parameters [8]. The network layer provides 
reliable data transmission and communication between 
physical resources and computing infrastructure as well as the 
application layer to process, analyze and visualize data in 

order to make operational and strategic decisions [9][10]. 
Collectively, these IIoT layers create a unified ecosystem that 
makes it possible to constantly monitor and exchange data 
during the manufacturing lifecycle.  

The hierarchical IIoT architecture, data-driven decision-
making mechanisms, systematically process raw sensor data 
into measurable knowledge that can be used to make smart 
and autonomous decisions [11]. information of the 
interconnected sensor, machine, and system to aid smart, 
quick, and correct decision-making throughout the 
manufacturing activities [12][13]. Through incorporating IoT, 
big data analytics. Information at the perception layer is 
initially preprocessed and filtered so as to provide accuracy 
and reliability before being sent to the network layer to edge 
or cloud-based platforms [14][15]. Advanced analytics and 
models of machine learning are implemented at the 
application layer to identify complicated links between 
process variables, equipment behavior, and production. 

Data-driven decision support frameworks based on IIoT 
represent a formalized method that connects data capturing, 
communication, analytics, and decision implementation into a 
single system [16]. The frameworks create a closed-loop 
feedback, as application-layer insights form the basis of real-
time action at the physical layer [17][18]. Such frameworks 
create a more responsive, reliable, and scalable industrial 
manufacturing by matching IIoT layers with information-
based intelligence, and would facilitate the transition to 
autonomous and resilient smart manufacturing systems. 

A. Structure of the Paper 

This paper is organized in the following way: Section II: 
Enabling technologies for IIoT-based manufacturing. Section 
III Data-Driven Decision Support Systems (DSS), Section IV 
Architecture of IIoT-based decision support framework. 
Evaluation of Literature, Section V. Conclusion and future 
work are detailed in Section VI. 

II. ENABLING TECHNOLOGIES FOR IIOT-BASED 

MANUFACTURING 

The term "Internet of Things" (IoT) refers to a broad 
technical notion that defines pervasive Internet connectivity, 
turning commonplace items into networked gadgets. 
connected digital and physical realms, a phenomenon called a 
CPS. By addressing critical industrial concerns, the IIoT seeks 
to improve security, privacy, and networking standards 
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without disrupting real production processes. The IoT layer is 
depicted in Figure 1. 

 

Fig. 1. IIoT layer architecture 

A. Perception Layer 

The sensor layer is another name for the perception layer. 
It is a combination of RFID, 2-dimensional barcodes, global 
positioning system (GPS) modules, and CCTV cameras, 
among other physical and sensor devices. Transportation of 
raw materials, surveillance of production areas, and collection 
of sensory data are all responsibilities of equipment in an 
industrial setting [19]. Systems for transport, automated 
guided vehicles, and industrial robots are all part of this 
category of gadgets. Prospective security flaws affecting the 
perception layer include node injection, manipulation, 
eavesdropping, reply attacks, timing attacks, RF interference, 
and node capture. 

B. Network Layer 

The data transmission or network layer is responsible for 
receiving and sending data between servers, smart objects, 
devices, sensors, networks, and other physical objects via 
wired or wireless connections. It allows traffic to flow 
between the network and the perception (or sensor) layer, 
which is susceptible to various attacks, through the use of 
protocols like as IPv4, IPv6, Wi-Fi, ZigBee, and others. 
Dangerous and widely known attacks on the network layer 
include MITM, Sybil, spoofing, DoS, and sinkhole threats. 

C. Application Layer 

Applications for the IIoT are passed down from connected 
devices to users by means of the application layer. To put it 
simply, it connects the end nodes to the IIoT network. Some 
well-known IIoT applications include smart homes, smart 
factories, and smart robotics. Smart home apps are vulnerable 
to security breaches because to their inherent insecurity, which 
can be found both within and externally. Application layer 
security concerns include hazardous code, side-channel 
attacks, cross-site scripting, and Trojan horses. 

D. Processing Layer 

Numerous security concerns in the multiple IIoT layers are 
the primary driver behind the creation of the fourth processor 
(or support layer). Due to security concerns, data cannot be 
transmitted directly to the network tiers in the three-tiered 
design; this layer mitigates several risks [20]. A solution to the 
security problems in IIoT was suggested by the fourth-level 
architecture. Before transmitting data acquired to the network 
levels, authentication is given precedence utilizing keys, pre-
shared secrets, and passwords. A variety of functions, 
including decision-making, data storage, and algorithm 
execution, are housed in its databases and servers.  

E. Industrial IoT-based Enabling Technologies 

Industrial IoT (IIoT)-based manufacturing uses advanced 
communication technologies, smart sensors, and connected 
machines to collect and analyze data in real time across 
production systems. In order to showcase adaptable, 
networked procedures, digital and physical technologies are 
utilized. Businesses are making quick decisions all the way 
through the supply chain and smart factory by using the 
internet and related technologies. IIoT [21]. The openness, 
socialization, interoperability, and globalization of the internet 
provide a solid foundation for the idea of the IoT. Data mining 
and AI are two of the most efficient ways to handle and store 
enormous data sets. The applications shown in Figure 2 make 
use of neural networks and fuzzy logic. These applications 
include data analytics/modeling, machine learning, edge and 
fog computing, blockchain, and so on. The IIoT improves 
operational visibility, automation, and data-driven decision-
making in contemporary manufacturing settings by 
integrating edge computing, cloud computing, and data 
analytics. 

 

Fig. 2. Industrial IoT-enabled technologies 

1) Cyber-physical System  
Industry 4.0's CPS is one of its main technologies. It uses 

smart systems built into production equipment to link the 
manufacturing sector to the real world (figure 3).  

 

Fig. 3. History of industrial revolutions 

IoT makes it possible to connect the real world of 
production to the virtual world. Computational power systems 
(CPS) enable an interactive industrial environment through 
networking, processing, and storage, resulting in smart 
factories [22]. Looking at it from this angle, smart products 
are becoming to be more and more recognized and traceable. 
In order to achieve Industry 4.0's goals of providing optimal 
security support across all levels of the CPS network and 
protecting sensitive data while guaranteeing data anonymity, 
the system must meet certain standards in terms of its 
functionality, maintainability, extensibility, adaptability, and 
variability. 

2) Blockchain Technology 
The unique properties of blockchain technology, such as 

distributed qualities, durability, certainty, tamper resistance, 
dependability, and built-in data origin, make it an ideal fit for 
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IIoT [23]. One data structure, the blockchain, leverages 
Bitcoin's distributed ledger and public key cryptography to 
facilitate safe peer-to-peer network transactions [24]. A hash 
value for the preceding link in the chain is referenced by each 
subsequent link. 

3) Fog Computing 
Fog computing is regarded as an augmentation of cloud 

computing, facilitating the interaction of the majority of 
commercial applications and operations with the Internet of 
Things (IoT) systems. In fog computing, no third parties are 
involved in the execution of necessary processes in industrial 
applications by means of a network of wireless and 
decentralized devices [25]. In fog computing, information 
technology infrastructure is used to provide online services. 

4) Cloud Computing 
The huge amount of data produced by IIoT needs to be 

processed, analyzed, and stored on many high-speed 
computers that are spread out in many places. All of the parts 
of an IIoT system can benefit from the computational, 
networking, and storage capacities offered by cloud 
computing technologies. There is a direct connection between 
backend clouds and all of the associated software and 
hardware [26]. There is a steady merging of IIoT with AI, and 
5G and other forthcoming technologies, such as VR, AR, and 
MR, are finding more and more applications in business, 
academia, and healthcare. 

5) Edge Computing 
The term "edge computing" describes a new way of 

thinking about data processing that uses local nodes rather 
than a centralized cloud [27]. Outline features of edge 
computing include:  

• Proximity: Resources for computation are situated in 
close proximity to devices that generate data. 

• Low latency: Processing and answers can now take 
place in real-time, thanks to data transit distance 
reduction. 

• Bandwidth efficiency: Minimizing network strain, 
only pertinent data is sent to the cloud. 

• Enhanced privacy and security: Reducing exposure, 
sensitive data can be processed locally. 

• Autonomy: Edge devices have the capability to 
function without being connected to the cloud. 

• Context awareness: Improved use of context is made 
possible by local processing [28]. 

6) Big Data Analytics 
The utilization of very complicated, high-performance 

computing platforms is essential for big data analysis due to 
the massive amounts of data generated by IIoT systems and 
devices. The use of conventional data processing methods was 
hindered by the considerably higher data volumes caused by 
the IoT [29]. Because there are so many SThs and EoIs linked 
to the cloud, the IoT centers on big data and AI to derive 
inferences and make judgements from sensory input. In 
contrast to the usual big data challenges, IoT big data presents 
its own set of challenges in terms of analysis and the 
integration of various big data analytics processes. 

III. TAXONOMY OF DATA-DRIVEN DECISION SUPPORT 

FRAMEWORKS 

Smart manufacturing's use of IoT and DSS technology, 
providing an in-depth analysis of existing implementation 

approaches. With the rise of Industry 4.0, the IoT has 
enormous potential to improve data-driven decision-making 
and hence transform production processes [30] 

A. Types of Decision Support Systems 

Decision Support systems are the computerized tools 
provided to the decision-making process, analyzing data, 
modelling scenarios, collaboration, managing documents, or 
making intelligent recommendations. They are classified into 
five types 

• Data-driven decision support system: Accessing and 
modifying structured data, both internal and external, 
is the focus of a data-driven DSS, which may also 
possess time series capabilities. They include the very 
basic query tools, file systems, and more complex 
systems such as EIS, BI systems, and OLAP. The main 
focus is to facilitate decision-making by enabling the 
retrieval, analysis, and presentation of large amounts 
of high-quality data. 

• Model-driven decision support system: A model-
driven DSS aids in decision-making by utilizing a 
variety of models, such as simulation, optimization, 
and financial models. It is a special type of design 
customized to analyze. Such DSS can be especially 
effective at modelling real-life scenarios and are 
widely applied to such objects as supply chain 
management in terms of manufacturing, planning, and 
logistics. 

• Communication-driven decision support system: A 
Communication-based DSS is based on the 
exploitation of network and electronic solutions to 
support the cooperation between decision-makers[31]. 
It places them in one environment to share data, 
information, and resources to enhance decision-
making. This architecture can also be referred to as a 
GDSS or a Collaborative DSS (CDSS). 

• Document-driven decision support system: 
Document-driven DSS. This type of DSS can be used 
to manage and retrieve different electronic documents, 
such as texts, photos, images, and audio/video files. 
With the growth of Internet technologies. key 
components, helping organizations to efficiently 
locate, structure, and retrieve relevant documents for 
decision-making. 

• Knowledge-driven decision support system: A 
knowledge-based DSS or intelligent DSS is a system 
that delivers information, understanding and 
propositions to assist users. It began its formation in 
the context of artificial intelligence, and is constructed 
on expert systems, working on rules, fuzzy logic, 
genetic algorithms or neural networks. develop 
effective solutions, and support decision-making 
effectively, particularly in areas such as manufacturing 
and scheduling. 

B. Key Data-driven decision support system in 
manufacturing 

The main idea behind a DSS and the main groups of DSSs 
that work together to help people make good decisions are 
shown in Figure 4. The five types of DSSs—data-driven, 
model-driven, knowledge-driven, document-driven, and 
communication-driven—each have their own benefits for 
looking at these parts and working together to make smart 
decisions. 
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Fig. 4. Data-Driven Decision Support Systems (DSS) 

1) Data-Driven DSS 
Data distribution and management for "machine-

generated data" and "human-generated data" can be enhanced 
with cloud-based big data management. Monitoring data from 
sensors should be optimized for usage in real-time automated 
fault identification, categorization, and root-cause detection. 

2) Document-Driven DSS 
Managing, retrieving, and analyzing unstructured or semi-

structured documents such as reports, manuals, emails, and 
logs to support decision-making. In manufacturing, they help 
extract useful information from maintenance records, 
inspection reports, and technical documents. Techniques like 
text mining and natural language processing enable faster 
access to relevant knowledge, improving operational 
decisions and problem resolution. 

3) Knowledge-Driven DSS 
The exchange of expert subject information between 

operators and machines, as well as between managers, is 
crucial in smart manufacturing. Live, data-driven DM can be 
bolstered by recommendation engines and opinion mining. 
Clustering and machine-user relationship mining can make 
production systems more self-aware, learn better, and 
maintain themselves. 

4) Model-Driven DSS 
The future of manufacturing depends on supply chain 

management that is both integrated and technologically 
advanced. Better demand forecasting and integrated 
technology are also essential components of this process. 
Costs can be reduced and supply network defects like sensor 
failure and degradation can be identified with the use of 
quantitative models and sensors. 

5) Communication-Driven DSS 
The increased availability of decision-making capabilities 

between computers and humans can pave the way for machine 
sharing in a variety of contexts and tasks. Better training of 
operators and decision-makers, as well as the ability to foresee 
and respond to potential issues, can result from the 
development of simulation technologies [32]. 

IV. ARCHITECTURE OF IIOT-BASED DECISION SUPPORT 

FRAMEWORKS  

A decision-support framework called the FASTEN Suite 
Tool is part of the IIoT design for decision support in the 
manufacturing system shown in Figure 1. It is supported by an 
open IIoT platform that makes sure all the system's parts can 
talk to each other in both directions [33]. Factors including 
manufacturing resources, business systems, and the FASTEN 
Suite Tool's integration are taken into account. As seen in 
Figure 5, the IIoT Platform enables connectivity between 

various systems and software modules through the provision 
of an Application Programming Interface (API) for broker 
subscriptions. 

 

Fig. 5.  Architecture of IIoT-based decision support in manufacturing 

system 

• Decision support framework: Visualization, 
optimization, simulation, and real-time monitoring 
capabilities. 

• One for real-time monitoring and another for 
predictive and prescriptive analytics. These tools can 
be used either in conjunction with one another or alone, 
depending on the particular application. 

• The Real-Time Monitoring Tool generates reports and 
dashboards using data visualized by a suite of tools. 
The user interface also allows for interaction with the 
tools. 

• The data input for the FASTEN Suite Tool is sourced 
from various sensors and corporate systems, including 
but not limited to the MES and the MMS. Before being 
transferred to the IIoT platform, the sensory data 
collected from the industrial processes undergoes local 
conditioning and pre-processing, such as sampling, 
filtering, compressing, and more. 

A. Challenges of IIoT-based manufacturing in data driven 
decision 

Industry 4.0 implementations of AI-based DSS do 
encounter certain challenges. Factors such as data quality, 
integration complexity, and the need for robust cybersecurity 
measures should be carefully considered. a number of 
obstacles must be overcome: 

1) Integration and Interoperability 
The lack of appropriate standards in communication 

networks has a significant influence on the integration of IoT 
devices. With the multitude of languages used in IoT hardware 
development and the numerous moving components, 
achieving communication interoperability has proven to be 
even more challenging than the already formidable task of 
implementing traditional communication interoperability. 

2) Privacy 
Hackers now have a multitude of new ways to take 

advantage of security holes in computer systems, thanks to the 
widespread use of Internet-enabled devices. Just as the 
number of Internet of Things (IoT) devices connected to a 
network increases, so does the attack surface [34]. This is 
because there are more devices for an attacker to compromise, 
making the network as a whole more vulnerable. 

driven decision 
support system 

in 
manufacturing

Data-Driven 
DSS 

Document-
Driven DSS

Knowledge-Driven 
DSS

Model-Driven 
DSS

Communication
-Driven DSS
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3) Sensor Networks 
Sensor networks are a remarkable technical development 

that enables the Internet of Things. The world can be shaped 
by their abilities to assess, infer, and understand 
environmental indicators [35]. Efficiency and cost-
effectiveness in large-scale remote sensing. 

4) Data-Related Challenges 
Poor data quality, inconsistency, incompleteness, and 

limited accessibility, which reduce the reliability of analysis 
and decision-making. Additionally, ensuring data privacy, 
security, and proper integration from multiple sources remains 
a major challenge. Data Quality and Accessibility, Data 
Privacy and Security, Data Governance and Compliance.  

5) Reliability 
Include difficulties in integrating AI systems with existing 

infrastructure, lack of interoperability among technologies, 
and high system complexity. Limited scalability, reliability 
issues, and the need for skilled technical expertise further 
hinder effective implementation. Scalability and Performance, 
Interoperability and Integration, Model Interpretability and 
Transparency. 

6) Model interpretability and Adaptibility  
High-order data-driven models, specifically machine 

learning ones, are not always transparent and may not be 
effective in adapting to the dynamics of operation[36]. which 
restricts trust and effectiveness in the long term in industrial 
decision-making. 

V. LITERATURE REVIEW  

The reviewed literature highlights recent of IIoT based 
manufacturing in data driven decision framework. The 
summary Table I systematically organizes key research 
studies, key findings, methodologies, challenges, and future 
work studies are discussed below: 

Tang et al. (2025) IIoT systems are inherently dynamic, 
deeply embedded in physical environments, and often 
embodied in autonomous agents. These characteristics 
demand an AI paradigm that can continuously adapt and 
generalize across heterogeneous data and tasks. IIoT 
infrastructure supports data collection or distributed training, 
large pre-trained foundation models (FMs) can be leveraged 
as a service to empower general industrial intelligence in IIoT. 
a four-dimensional SCCE framework (Sensing–Computing–
Connectivity–Evolution) that systematically examines the 
deployment of FMs in IIoT along the data processing pipeline 
and system lifecycle [37]. 

S et al. (2025), proposed the IIoT has changed the game 
for smart applications entirely. Despite the problem of 
efficient service placement and data analytics, resource 
allocation and meeting the stringent Quality of Service (QoS) 
standards remain challenging in Fog-Cloud systems. Cloud 
and mission-critical IIoT services move closer to the edge to 
reduce latency. A QoS-aware optimization approach 
simplifies service placement and resource management. Real 
time decisions are possible with the use of latest day in data 
analytics [38]. 

Lv and Li (2025), IIoT devices and the need for real-time 
processing in medical device production and pharmaceutical 
manufacturing. a distributed healthcare-aware deep learning 
resource orchestration (DH-DLRO) algorithm for edge 
computing-enabled healthcare IIoT flexible manufacturing 
systems. a joint optimization problem for task offloading 
decisions and resource allocation, specifically tailored to 
healthcare manufacturing requirements. DH-DLRO maintains 
consistent Quality of Service levels above 0.95 for medical 
device assembly tasks while achieving optimal CPU 
utilization effectiveness in balancing computational efficiency 
with healthcare manufacturing quality [39]. 

Ojha et al. (2024) proposed a novel framework for the 
adoption of DDDM in AMS to enhance its decision-making 
capabilities. This framework consists of six stages: 
manufacturing stage, sensing stage, data stage, knowledge 
stage, decision stage, and application stage leverages big data 
analytics to extract actionable, integrates CPS to create a 
seamless interaction between physical and digital systems, 
and employs IoT technologies for real-time data acquisition 
and monitoring, decision accuracy, and response time detailed 
data collection steps, preprocessing, and analysis, practical 
implementation and effectiveness [26]. 

Gandhi (2023) A novel framework called Hybrid-sense 
can optimize maintenance schedules, detect future problems, 
and cut down on operational expenses and downtime. It uses 
state-of-the-art machine learning and data analytics 
approaches. In order to improve the accuracy of predictions, 
developed a hybrid architecture that incorporates data from 
multiple sources, such as operating logs, environmental 
conditions, and sensor readings. This design combines classic 
statistical methods with deep learning algorithms [40]. 

 Rosati et al. (2023) DSS consists of the following 
fundamental components: data gathering, feature extraction, 
drawing on relevant literature, innovative method relies on a 
feature extraction approach and ML prediction model. The 
integration of ML into cloud-based architecture paves the way 
for data analysis, cloud storage, and predictive models. to 
optimize maintenance schedules and receive real-time alerts 
regarding operational risks; this allows manufacturers to 
decrease service costs by increasing uptime and productivity 
[41]. 

Sergeeva, Voskobovich and Kukharenko (2022) 
Optimization of processes, predictive maintenance, and real-
time decision-making in IIoT-based manufacturing are all 
substantially improved by IIoT decision support frameworks. 
the incorporation of sensor-driven architectures, big data 
analytics, and machine learning; recognizing difficulties 
associated with data heterogeneity, scalability, and security in 
smart processing systems. The usage of natural language 
processing is associated with AI and mathematical linguistics; 
synthesis refers to the process of producing text that is literate. 
This study examines processing methods for making 
structured data accessible to AI systems by transforming 
unstructured data [42].

TABLE I.  SUMMARY OF LITERATURE REVIEW ON IIOT BASED MANUFACTURING IN DATA DECISION FRAMEWORK

Author Study On Key Findings Application Challenges Future Work 

Tang et al. 

(2025) 

Foundation Models (FMs) in 

IIoT using SCCE (Sensing 

SCCE enables adaptive, 

generalizable AI across 

IIoT lifecycles 

General industrial 

intelligence, 

Data heterogeneity, 

deployment cost, 

Lightweight FMs, 

continual learning, 

edge–FM co-design 
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Computing Connectivity 
Evolution) framework 

autonomous IIoT 
systems 

system evolution 
complexity 

S et al. 

(2025) 

QoS-aware service placement 

and resource allocation in Fog 

Cloud IIoT 

QoS-aware optimization 

improves latency and 

reliability 

Mission-critical smart 

industrial applications 

Dynamic workloads, 

strict QoS constraints, 

scalability 

AI-driven real-time 

orchestration, 

predictive QoS models 

Lv & Li 

(2025) 

Edge-enabled healthcare IIoT 

manufacturing with DH-

DLRO 

Maintains QoS > 0.95 

with optimal CPU 

utilization 

Medical device and 

pharmaceutical 

manufacturing 

Real-time constraints, 

healthcare compliance 

Multi-objective 

optimization, cross-

factory deployment 

Ojha et al. 
(2024) 

Data-Driven Decision Making 
(DDDM) framework for AMS 

The six-stage framework 
improves decision 

accuracy and response 

time 

Advanced 
Manufacturing 

Systems (AMS) 

Data pre-processing 
complexity, CPS 

integration 

Automated data 
pipelines, AI-enhanced 

decision layers 

Gandhi 

(2023) 

Hybrid-sense predictive 

maintenance framework 

Hybrid ML + DL 

improves failure 

prediction accuracy 

Predictive 

maintenance in smart 

manufacturing 

Multi-modal data 

fusion, model 

interpretability 

Explainable AI, 

adaptive maintenance 

scheduling 

Rosati et 
al. (2023) 

Cloud-based ML Decision 
Support System for 

maintenance 

ML-based DSS reduces 
downtime and service 

costs 

Industrial maintenance 
optimization 

Cloud latency, data 
security, real-time 

alerts 

Edge–cloud hybrid 
DSS, real-time 

anomaly detection 

Sergeeva et 
al. (2022) 

Data-driven DSS in IIoT 
manufacturing with NLP 

integration 

ML and NLP enhance 
decision support from 

heterogeneous data 

Smart manufacturing 
and process 

optimization 

Data heterogeneity, 
scalability, security 

Secure AI frameworks, 
advanced NLP for IIoT 

data 

VI. CONCLUSION WITH FUTURE WORK 

The increasing role of data-driven decision support 
systems as an underlying component of smart manufacturing 
systems based on Industrial IoT (IIoT). It is confirmed in the 
reviewed literature that the combination of layered IIoT 
structures with advanced analytics, machine learning, 
artificial intelligence, and edge-cloud computing can be used 
to support more effective real-time monitoring, predictive 
maintenance, quality assurance, and process optimization in 
an industrial setting. Decision support systems (DSSs) that are 
data-driven, model-driven, knowledge-driven, document-
driven, or communication-driven provide a comprehensive 
decision-making ecosystem that can address the strategic and 
operational demands of manufacturing in all its facets. 
Although these developments are positive, some significant 
issues like heterogeneity of data, inability to interoperate 
between heterogeneous devices and platforms, vulnerability 
to cybersecurity and privacy, inability to operate at scale, and 
insufficient interpretability and adaptability of the complex 
analytical models have still not been addressed. The integrity 
of intelligent decision support systems, their perceived 
transparency, and their overall popularity with industry.  
Future research must be on designing standardized and 
interoperable IIoT systems, data analytics that are secure and 
do not compromise privacy, and explainable and reliable AI 
that is suited to industrial decision-making. High-level edge 
intelligence, digital twins, and adaptive learning algorithms 
can further minimize the latency and improve the system 
responsiveness. Enhancing human-machine cooperation and 
integrating the knowledge of the domain into the circle of 
decision making will be critical to the success of resilient, 
autonomous and sustainable follow-up generation smart 
manufacturing ecosystems. 
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