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Abstract—Stress analysis constitutes an essential part of
mechanical design, by which the safety, reliability, and
performance of the components engineered to operate under
complex loadings and environmental conditions can be
ascertained. Conventional methods for stress prediction, such as
analytical approaches, finite element analysis (FEA), and
experimental testing, have been implemented extensively in
applications like piping systems, pressure vessels, and rotating
machinery. these methods are frequently associated with
significant computational costs, prolonged solution times, and
extensive modeling efforts, thereby hindering their effectiveness
in rapid design iterations and real, time applications. In a
landmark departure from traditional methods, the advent of
artificial intelligence (AI) and machine learning (ML) has
spawned data, driven alternatives that can efficiently predict
stress responses by learning the nonlinear relationships between
geometrical features, materials, and loading conditions. Al,
driven stress prediction models, which encompass machine
learning and deep learning methods, are capable of quick and
precise stress estimations, thus facilitating early, stage design
decisions and diminishing the need for a multitude of simulation
runs a comprehensive review of Al, assisted stress prediction
models in mechanical design, their interaction with traditional
stress analysis methods, the main advantages, and the
limitations intrinsic to them regarding computational efficiency,
predictive accuracy, and obstacles stemming from data quality,
generalization, and physical interpretability, thereby sketching
the next steps towards intelligent stress analysis frameworks in
engineering practice.

Keywords—Stress prediction, Mechanical Design
Optimization, Machine Learning in Stress Analysis, Finite
Element, Deep Learning Techniques, stress piping analysis.

I. INTRODUCTION

Stress analysis is the basis of mechanical design to make
engines or engineered components safe, sound, and efficient
[1]. Stress prediction helps designers to consider the reaction
of the material and geometries when subjected to external
forces, boundary, and the environmental influences [2][3][4].
Traditionally, such determination is done based on analytical
formulations, numerical methods like finite element analysis
(FEA), and experimental testing. the mechanical behavior of
the piping under routine loads like internal pressure and
thermal loads, and under unusual and intermittent loads,
including those of earthquakes, winds, special vibrations and
water hammer of mechanical design practice, and their
computational cost and time to solution can be prohibitive and
costly to exploration of design space and slows development
cycles [5].
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Stress prediction with the help of AI is one of the
promising cases of the extension of conventional stress
analysis techniques. The artificial intelligence methods allow
the quick estimation of stress distributions by learning
nonlinear connection between design factors, material
characteristics, and loading factors and stress reactions
without having to solve governing equations repeatedly [6][7].
Such Al-assisted models are used in mechanical design
processes, and can serve to complement physics-based
simulations, where they are used to rapidly screen design
options and locate problem areas of design at early design
stages[8]. This interdependence of mechanical design goals
and data-driven intelligence is a transition to more efficient
and responsive design.

The stress analysis Al concept is also enlarged by the
involvement of advanced machine learning and deep learning
architectures that can process high-dimensional data and
complex geometries [9][10][11]. The trained models designed
by simulation or experiment data can reproduce the complex
pattern of stress, which is hard to estimate under simple
analytical conditions. hybrid methods using Al and physics-
based constraints improve the quality of predictions and at the
same time make it physically consistent [12]. Al-driven stress
analysis that enhances performance in computational domains
and helps make more decisions in real-time in the field of
mechanical design the quality of information, the integration
of physical laws in theories of learning, as well as the
verification of the predictions made by Al in terms of
numerical and experimental factors [13][14]. Al-assisted
stress prediction is a convergence point where the principles
of mechanical design, the methods of stress analysis and
artificial intelligence are all involved in the promotion of
intelligent engineering systems.

II. CONVENTIONAL STRESS ANALYSIS IN MECHANICAL
DESIGN

pipe stress analysis can help improve system integrity,
preventing issues such as leaks, equipment failure, foundation
stress cracking or anchor bolt failure. This preventive measure
can extend equipment life and reduce costs for system
operations and maintenance stress Analysis in pressure vessel
nozzles.. Pressure vessels cause applied loads to be tensile on
the internal region of the pipe wall and compressive in the
external region [15]. These stresses are principal factors that
tend to affect plastic deformation. Current practices include
using Finite Element Analysis (FEA) to model stress
distribution and/ or to test material performance. the PVC is
fast becoming popular due to its inexpensive the following to
increase pipe life:fluid load limits, pressure, and strain.
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A. Inputs for Piping Stress Analysis

Stress Isometric from piping designer, P&ID & Line
Designation Table (LDT from process department, Equipment
GAD and other vendor data from the mechanical group.PFD
the process department, Specification of piping (PMS) from
the piping material group, All control valves and other valve
data from Instrumentation. Project-specific nozzle allowable
standard, overall plot plan, and area plot plan for finding HPP
elevation and equipment orientation from piping layout group:

Governing codes and standards for pipe stress analysis

e ASME B31.3: Process piping Code
e  Centrifugal Pumps: AP1 610
e  Centrifugal Compressors: API 617

B. Stress Analysis of Pump Piping System

The analysis of pump piping consists of suction and
discharge piping. The static analysis and modal analysis of
suction and discharge lines of Pump One of the piping unit's
refinery systems consists of 2 pumps with two suction and
discharge nozzles [16]. The pump piping loads exerted on the
pump discharge nozzles have exceeded the pump
manufacturer's limit. It is required to bring the nozzle loads
within the limit by stress analysis (static) of the pump piping
system. The static analysis of the complete system is
performed in finite element analysis software (CAESAR-II),
see in Figure 1. It includes finalizing the piping system routing
and supports.

>

Fig. 1. CAESAR-II Model

CAESAR-II is a basic tool to the piping stress analysis
exercise which offers various functions to the user. Through
accurate forecasting of stresses and deformations

C. Optimization of piping

The design and cost comparison among the cases
optimization. However, these are not being used in
consultancies due to many drawbacks like time, cost, etc. For
this project, the optimization is achieved mainly by material
optimization and engineered support, resulting in cost
optimization cases are being analyzed in terms of the cost of
material used in the piping.

D. Stress Evaluation

The standard-purpose FEA codes will not consider the
supports' geometric properties, valve data, and engineered
support. Constructing the analytical models for each load case
scenario is of utmost critical. Moreover, the evaluation of
allowable stresses for each load case is very strenuous. So,
CAESAR-II program was used in this research, which is used
in all the process industry. From the below Figure 2, software
modelling is done as per stress isometric.
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Fig. 2. Temperature Profile for A Two-Pump System Isometric Views.

Procedure of the piping modelling piping system part
Node and coordinates of the piping system Piping parameters”
(like length, diameter, and schedule), complete the equipment
modelling and then start modelling the piping based on piping
isometric drawing. Always make a closed system to get the
correct results. Typically, pump lines are connected to heat
exchanger, horizontal or vertical vessel and tank.

1) Finite Elements Methods

The process of creating a model, which is a representation
of how a system of interest is constructed and operates, is
called modelling [17]. A model is a simplified version of the
system it depicts. A model's ability to help analysts forecast
the impact of system modifications is one of its goals. A model
should, on the one hand, closely resemble the real system and
include the majority of its unseen characteristics it is hard to
comprehend and use. Realism and simplicity are wisely traded
off in a good model. The geometrical model of the Pressure
vessel is shown in Figure 3.
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Fig. 3. Geometrical Model of Pressure Vessel

Hyper mesh 9.0 is utilized for finite element modelling.
Hyper Mesh is a powerful pre- and post-processor for finite
element solvers that aids in the design process in a visually
immersive and interactive setting. An essential part of finite
element analysis.

Popular FEM Software for Pressure Vessel Analysis

e ANSYS: ANSYS is a popular software used for finite
element analysis (FEA), which is great for studying
how pressure vessels handle stress. It’s known for
being flexible and powerful, making it a top choice for
engineers. ANSYS is especially good at dealing with
materials that don’t behave in simple ways, such as
those that stretch or deform over time.

e ABAQUS: ABAQUS is another widely used FEA
software designed for the nonlinear and dynamic
analysis and has traditionally been most effective for
analyzing pressure vessels. Where stress concentration
is highest.
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2) Stress is Classified into Three Categories

This section categorizes stress analysis into three distinct
types: primary, secondary, and tertiary stresses [18]. providing
a detailed explanation of each.Primary Stress: This type is
created with the purpose of support stability against the
external and internal loads and the moments Secondary Stress:
This category of stress is caused due to displacement
constraints for every structure member, for example the
thermal expansion Tertiary Stress: This is known as the high
stress which causes susceptibility to fatigue fracture which
exists in heavily stressed areas The system is expected to be
able to compute stresses like hoop, axial, and even bending
stresses, among others.

3) Pipe Support Impact to Pipe Stress Analysis

stresses on a piping system is to ensure that the piping is
well supported and does not fall or deflect under its own
weight and also to ensure that the deflection is under the limit
when thermal loading takes place. Stress analysis determines
the forces exerted in the pipe, anchor points, restrains in piping
system, stress induced in pipe stress and the effect of using
pipe supports on the stress in the piping system [19]. The
findings revealed that the type of support chosen, such as the
gap and distance of pipe support, has a significant impact on
the stress value in the piping system. The results of the
analysis are carried out several times to get the stress value so
that it does not exceed the allowable stress. The selection and
location of these supports is based on the results obtained from
displacement, stress, reaction and equipment nozzle analysis
of the piping system. The design is in accordance with ASME
B31.3, which is the standard code for process piping. The
proposed method can be adapted for piping configuration of
any industrial plant.

4) Pipe Layout Impact to Pipe Stress Analysis

piping system is mainly dependent on the Equipment
Layout. While finalizing the location of equipment, the
connecting piping flexibility is also to be considered along
with the process flow, accessibility to valves, instruments,
equipment maintenance, cleaning, operational safety,
headroom clearance and aesthetics. The piping layout
designer has to undergo number of iterations to reach to a final
layout. Pipe Routing is always decided based on the
Equipment layout. The design will have an impact on the
design, material cost and safety of the plant. In the project,
dimensions of pipe rack loops for a process plant are
optimized based on temperature, pipe size, pressure etc.

5) Standards for stress and displacement of pipelines

CAESAR 1I is capable of choosing different stress
validation standard according to different conditions. ASME
B31.8 Gas Transportation and Distribution Piping Systems
(ASME 2012c) is normally used for gas pipeline while ASME
B31.4 Pipeline Transportation Systems for Liquids and
Slurries (ASME 2012b) is used for oil pipeline[20]. For the
validation of displacement (GB 50251; GB 50316), GB 50251
Code for design of gas transmission pipeline engineering is
used for transverse displacement validation and GB 50316-
2008 Design code for industrial metallic piping is used for
axial displacement and angular displacement.

a) Checking Stress

the stress of pipeline in normal condition can be
categorized as: primary stress, secondary stress, and peak
stress. The primary stress represents the effect of internal
pressure and gravity on the stress, secondary stress represents
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the effect of difference in temperature on the stress and peak
stress is the combination of primary stress and secondary
stress.The general Equation of stress validation is(1)

o < Fo; 9]

which o represents stress; F is the design coefficient of
which the values are listed in Table I; o5 is the minimum yield
strength of the pipeline material Primary stress is calculated as
follows Equation (2)

o,=—7+—-+— (2)

where o0, is primary stress, MPa Fax is additional axial
force which is caused by pressure, N A is pipe cross-sectional
area, mm?2 P is pressure, MPa D is pipeline diameter, mm S is
pipeline thickness, mm; M is synthetic bending moment, W
is bending section modulus, mm3.Secondary stress is
calculated as follows Equation (3)
Mg
w

3)

where oy is secondary stress, MPa; ME is bending
moment of thermal expansion, Nmm W is bending section
modulus, mm3.

O =

TABLE L. VALUES OF THE DESIGN COEFFICIENT (F)
Stress type Gas pipeline Oil pipeline
Peak stress 0.90 0.90
Primary stress 0.75 0.72
Secondary stress 0.72 0.90

b) Checking Displacement

Displacement validation focuses on transverse and axial
displacement. GB 50251 Code for design of gas transmission
pipeline engineering requires that transverse displacement
does not exceed 0.03 times of the diameter of the pipeline. GB
50316- 2008 Design code for industrial metallic piping
requires that axial displacement does not exceed 0.4 time of
the length of pipeline support. The angular displacement of a
horizontal pipeline is generally required to be no greater than

IIT. AI-ASSISTED STRESS PREDICTION MODELS
There are two approach machine learning and deep
learning technique discussed below:
A. Machine Learning Approach

Machine learning (ML) and artificial intelligence (Al) are
increasingly transforming mechanical engineering and
machine systems[21]. These technologies enhance efficiency,
reduce costs, and minimize errors in engineering processes, as
shown in Figure 4 are given below:
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Fig. 4. Demonstration of the Types Of Machine Learning
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e Supervised learning forms the backbone of predictive
modelling in mechanical engineering applications.
This approach utilizes labelled training datasets to
learn mapping functions between input features and

target outputs. Common supervised learning
algorithms extensively used.
e Unsupervised learning techniques focus on

discovering hidden patterns and structures within
unlabelled datasets, making them invaluable for
exploratory data analysis and feature extraction in civil
engineering.

e Reinforcement learning is an emerging Al technique in
mechanical design that enables systems to learn
optimal decisions through interaction with their
environment based on reward-driven feedback. In
stress prediction and structural optimization.

1) KNN

The KNN model is a statistical tool for estimating the
value of an unknown point based on its nearest neighbours.
Two simple techniques are used in this study: the Euclidean
distance function d(x, y), provided in Equation (12), and the
Manhattan distance function d(x, y), provided in Equation
where x = (x1, where (x1...,xn),y=(yl, ..., yn),and nis
the vector size. The K neighbour point that has the shortest
distance to the unknown point is used to estimate its value
using Equation (4)

Y. = Xiea Wi 4)

Where w; is the weight of every single neighbor point y;
to the query point ¥,.

2) S¥M

Particularly effective for classification problems such as
soil type identification and structural damage classification.
SVMs excel in handling high-dimensional data and nonlinear
relationships through kernel functions.

B. Deep Learning Technique
There are some deep learning approach are using ai stress

prediction model of ANN, RNN and LSTM are discussed
below:

1) ANN

The ANN model is based on the concept of the brain’s self-
learning ability, mimicking the human nervous system to
process information the numbers of neurons and hidden layers
are increased, the ability to handle nonlinearity improves.
However, these conditions may result in high computational
complexity, overfitting. ANN model, a} is the ith activation
element of the Ith layer in the hidden layer. b} is bias, a! is
equal to input value times weightw}i and add the bias in
Equation (5)

| n L1 A
z; = Yi=1Wj;a; + b; ©)

the input layer data combined with bias and weight to
obtain some value.

2) RNN

RNN is a type of neural network that can model “time-
like”-series data, and it commonly adopts a nonlinear structure
in deep learning.

The ring-shaped neural network is expanded along the
“time” axis, as shown in the right half of Figure 5, where the
“time” step t and the hidden state st can be expressed as a
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function of the output from the previous (st—1) “time” steps
and previous layers (xt).

Fig. 5. Schematic Structure of Recurrent Neural Network

3) LSTM

advanced regularization and optimization techniques to
improve the model’s performance. After normalizing the data
using an LSTM model consisting of two LSTM layers, with
128 hidden units and a 50% dropout to prevent overfitting.
Batch normalization was applied to enhance stability and
convergence. A fully connected layer makes the final
prediction, followed by a Softmax activation to obtain
probabilities.

IV. ADVANTAGES AND LIMITATIONS OF AI-BASED STRESS
PREDICTION

The stress prediction Al methods provide huge advances
in terms of computational -efficiency, quick design
assessment, and the capability to address non-linear stress
patterns complicated by complex nonlinear stress behaviors
than the traditional methods. Nonetheless, in spite of these
strengths, issues connected with data dependency, model
generalization, interpretability and reliability are still burning
issues, as outlined below.

A. Advantages of Al Stress Prediction In Mechanical
Design

1) High Predictive Accuracy

Al models have the ability to reproduce complex and
nonlinear relationships between two or more variables (e.g.
geometry, material properties, loading conditions) that can
often be more accurate than traditional analytical or empirical
models.

2) Quick Analysis and Time-Saving

Al-based models are capable of predicting the stress in
near-instances after training, and they can save a lot of time in
comparison to the finite element analysis (FEA) when used in
large-scale or real-time.

3) Cost Reduction

By minimizing the need for repeated simulations, physical
prototyping, and extensive experimental testing, Al-based
stress prediction can lower overall design and validation costs.

4) Capability to Handle Large and Complex Datasets

Al methods are capable of processing high-dimensional
data simulation, sensor or historical data, and thus they can be
applied to complex structures and operating conditions.

5) Support for Real-Time Monitoring and Decision-Making

Al models can be used to support real-time estimation of
stress, early fault detection, and predictive maintenance when
combined with sensor data and digital twins..



P, Rajput Journal of Global Research in Electronics and Communication, 2 (01) January 2026, 1-7

B. Limitation of Al Stress Prediction In Mechanical Design

1) Data Quality and Coverage

Stress prediction models based on Al have a strong
dependence on large, accurate, and representative datasets.
When the training data is not comprehensive to encompass all
the relevant geometries, boundary conditions, loading cases
and material behaviours, the model may make unreliable
predictions. Noise, measurement errors or inconsistencies

2) Limited Generalization and Extrapolation Ability

The Als tend to perform good in the region of the same
conditions that the training data encompasses without
extrapolating them. Extreme loading conditions or novel
materials In the case of new designs, extreme loading
conditions or new materials the prediction accuracy can
greatly decrease and they should not be used in an early-stage
or innovative engineering design.

3) Lack of Physical Transparency and Interpretability

A lot of Al models are black-box systems that do not
provide much understanding of the physical concepts
underlying stress distribution. This interpretability deficiency
makes engineers more likely not to know whether the result is
correct, how the failure occurred or what decisions were taken
in making the design, especially in safety-related applications.

4) High Computational Cost During Training Phase

Though Al models offer rapid predictions after training,
their training can be computationally costly, and particularly
when it comes to deep learning structures. This is further
expensive since simulation or experiments based on high
fidelity generate training data.

5) Sensitivity to Changing Operating Conditions

Model drift due to variations in temperature, material
degradation, corrosion, fatigue or varying conditions at the
boundary with time, result in decreased model accuracy. To
ensure stable performance, constant monitoring and recurrent
retraining are necessary.

V. LITERATURE OF REVIEW

The reviewed literature highlights recent advancements in
Al assisted stress prediction model in mechanical design. This
Table I1, The summary table systematically organizes research
studies key findings, challenges are discussed below:

Manguri, Saeed and Jankowski (2025) It offered
adjustment and regulation of shape, stress, or both in
structures and emphasizes such control’s importance. The
control of systems is classified into three primary classes
nodal movement control, axial force control, and controlling
the two classes. Each class is thoroughly assessed, to reduce
the number of devices (actuators) to adjust and optimize
actuators’ placement to achieve optimal structural control,
considering the cost implications of numerous actuators [22].

Fatouma, Abdejallil and Omar (2025) stress tolerance
analysis applying empirical values for levels in the lens. The
main idea of this research study is to obtain a configuration
performance with less stress tolerance for glass thermal effects
in opto-mechanical instruments a theory to estimate the
magnitude of the compression stress used at the glass-metal
interface tensile stress can be statistically established for the
lens under different cryogenic temperatures. stress tolerances
is best performed by finite element analysis methods more
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efficient prediction of component failure from stress tolerance
analysis and a more accurate prediction [23].

Sotoodeh (2024) Oil and gas plants require piping
components and systems to transport fluids and gases. A
number of factors affect piping, including pressure,
temperature, load, and flow. The purpose of this study is to
prevent mechanical failure of piping a result of mechanical
loads, which is called a piping stress analysis. piping failures
caused by mechanical loads. This is done by applying stress
analysis based on piping codes the first part examines piping
stress analysis against principal stresses, stress analysis
against sustained loads, occasional load analysis on the
analysis of piping stresses of stresses related to piping reaction
forces [24].

Sankardoss, lei and Mimeche (2024) the significance of
pipe support stiffness in both thermal expansion and seismic
conditions. The actual support stiffness is included in the
analysis by modelling the structural member using the
CAESAR II software. Incorporating actual support stiffness is
important because it helps accurately simulate the behavior of
piping systems under different loading conditions, leading to
more accurate and better decision-making during the design
and operational stages actual support allows for a more
optimal design, reduces the risk of failure due to excessive
stresses and improves overall piping system performance [25].

Tiwari et al. (2024) Machine learning (ML) is a promising
approach for forecasting the fatigue life of components an
effective approach for reliably estimating the fatigue lifespan
of mechanical components beneath uniaxial loads in high-
cycle fatigue conditions. circumstances, notch shapes, and
fatigue lifetimes. Conventional techniques have depended
heavily on any of the mechanical reaction characteristics, like
strain, stress, or power variables can be used well to estimate
fatigue lifespan, with stress-based estimates being the most
accurate. Gradient boosters and Random Forest outperform all
other ML techniques tested a considerable enhancement in
prediction accuracy obtained by adding novel data acquired
using the Basque formula [26]

Hovanec et al. (2023) mechanical-stress prediction using
a NN is described. The method essentially replaces finite
element methods (FEMs), which require large amounts of
time. as the NN predicts the mechanical ATT stress in 0.00046
s, whereas the solution time using FEM is 1716 s for the same
load step. whereas the novel method calculated the ATT stress
for 36 regimes in 0.0166 the development of a method that can
predict. The partial results from the experimental tensile tests
are also presented, and they are used for FEM calculations
[27].

Chen et al. (2022) mechanical stress distribution in a
representative stator core with models of increasing fidelity,
starting from the basic analytical hoop stress model with a
simplified back-iron ring to a machine level stress model with
stator teeth, windings, slot liners, winding insulations and slot
wedges. The impact of windings and stator teeth on the
accuracy of the mechanical stress model of the windings and
the associated insulations, slot liners and wedges for an
accurate prediction of mechanical stress that the core loss in
the stator core can be underestimated by ~10-20% if the
mechanical stress caused by shrink fit process is neglected
(28]
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TABLE I SUMMARY OF LITERATURE REVIEW OF AI ASSISTED STRESS PREDICTION MODEL IN MECHANICAL DESIGN
Author Study On Challenges Key Findings Limitations Future Work
(Year) Addressed
Manguri, Structural  shape | High cost and | Classified control systems into | Limited consideration | Integration of
Saeed & | and stress control | complexity due to | nodal movement control, axial | of real-time | intelligent
Jankowski using  actuator- | large  number of | force control, and combined | adaptability and | optimization and Al-
(2025) based systems actuators; optimal | control; demonstrated reduction in | nonlinear  structural | based actuator
actuator placement actuators ~ while  maintaining | behavior placement strategies
effective stress and shape control
Fatouma, Stress  tolerance | Accurate estimation of | Established a statistical approach | Heavily dependent on | Incorporation of Al-
Abdejallil & | analysis of glass | tensile and | for stress tolerance using FEA; | empirical data and | driven surrogate
Omar (2025) lenses under | compressive stress at | improved prediction of failure due | FEM accuracy models for faster
cryogenic glass—metal interfaces | to thermal effects stress tolerance
conditions prediction
Sotoodeh, Piping stress | Mechanical failure due | Demonstrated effectiveness of | Conventional analysis | Al-assisted stress
(2024) analysis in oil and | to pressure, | code-based stress analysis in | is time-consuming | monitoring and
gas plants temperature, sustained | preventing piping failures; | and  sensitive to | predictive
and occasional loads evaluated principal and reaction | modeling assumptions | maintenance for
stresses piping systems
Sankardoss, Effect of pipe | Inaccurate modeling of | Showed that incorporating real | Software-based Development of
Tei & | support stiffness | actual support stiffness | support stiffness using CAESAR | approach limited by | intelligent digital
Mimeche under thermal and | in piping systems II improves accuracy and system | predefined modeling | twins integrating real-
(2024) seismic loading reliability capabilities time stiffness data
Tiwari et al. | Machine learning— | Reliable fatigue life | Gradient Boosting and Random | Limited Expansion to
(2024) based fatigue life | estimation across | Forest models outperformed | generalization outside | multiaxial loading
prediction under | varying notch shapes | traditional methods; stress-based | trained datasets and physics-informed
high-cycle fatigue | and stress levels features yielded highest accuracy ML models
Hovanec et al. | Neural network— | Extremely high | NN predicted stress in | Model accuracy | Hybrid FEM-NN
(2023) based mechanical | computation time of | milliseconds compared to hours | dependent on training | frameworks and
stress prediction FEM simulations using FEM; validated using | data quality and range | broader experimental
experimental tensile data validation
Chen et al. | Mechanical stress | Underestimation  of | Demonstrated that neglecting | Increased Al-assisted reduced-
(2022) modeling in stator | stress effects due to | shrink-fit stress leads to 10-20% | computational order models for
cores of electrical | simplified analytical | underestimation of core loss; | complexity with | accurate yet efficient
machines models higher-fidelity models improve | higher model fidelity stress prediction
accuracy

VI. CONCLUSION WITH FUTURE WORK

Al, assisted stress prediction models in mechanical design
have been the main topic of discussion, emphasizing their
increasing importance in overcoming the limitations of
traditional methods of stress analysis. Conventional methods
such as analytical formulations, finite element analysis, and
experimental testing are still the main tools for ensuring
structural safety and compliance with design codes; however,
their intensive computational resource and time requirements
limit rapid design iterations and real, time applications. Al,
based stress prediction models have shown remarkable
potential by providing quick, cost, effective, and accurate
estimation of stress responses through data, driven learning of
complex nonlinear relationships among geometry, material
properties, and loading conditions. These models facilitate
early, stage design evaluation, allow for the -efficient
optimization of design, and, when combined with sensor data
and digital twins, enable condition monitoring and predictive
maintenance. However, the issues of data dependency, limited
generalization beyond trained domains, lack of physical
interpretability. Future research should be the creation of
hybrid physics, informed AI models that incorporate the
mechanical principles governing the phenomena into the
learning frameworks to increase the models' reliability and
explain ability. a large volume of quality data sets through
state, of, the, art simulations and experimental validation will
improve the models' robustness. Moreover, the coupling of
Al assisted stress prediction with on, line monitoring systems,
digital twins, and adaptive retraining protocols is an intriguing
prospect.
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