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Abstract—Stress analysis constitutes an essential part of 

mechanical design, by which the safety, reliability, and 

performance of the components engineered to operate under 

complex loadings and environmental conditions can be 

ascertained. Conventional methods for stress prediction, such as 

analytical approaches, finite element analysis (FEA), and 

experimental testing, have been implemented extensively in 

applications like piping systems, pressure vessels, and rotating 

machinery. these methods are frequently associated with 

significant computational costs, prolonged solution times, and 

extensive modeling efforts, thereby hindering their effectiveness 

in rapid design iterations and real, time applications. In a 

landmark departure from traditional methods, the advent of 

artificial intelligence (AI) and machine learning (ML) has 

spawned data, driven alternatives that can efficiently predict 

stress responses by learning the nonlinear relationships between 

geometrical features, materials, and loading conditions. AI, 

driven stress prediction models, which encompass machine 

learning and deep learning methods, are capable of quick and 

precise stress estimations, thus facilitating early, stage design 

decisions and diminishing the need for a multitude of simulation 

runs a comprehensive review of AI, assisted stress prediction 

models in mechanical design, their interaction with traditional 

stress analysis methods, the main advantages, and the 

limitations intrinsic to them regarding computational efficiency, 

predictive accuracy, and obstacles stemming from data quality, 

generalization, and physical interpretability, thereby sketching 

the next steps towards intelligent stress analysis frameworks in 

engineering practice. 

Keywords—Stress prediction, Mechanical Design 

Optimization, Machine Learning in Stress Analysis, Finite 

Element, Deep Learning Techniques, stress piping analysis. 

I. INTRODUCTION 

Stress analysis is the basis of mechanical design to make 
engines or engineered components safe, sound, and efficient 
[1]. Stress prediction helps designers to consider the reaction 
of the material and geometries when subjected to external 
forces, boundary, and the environmental influences  [2][3][4]. 
Traditionally, such determination is done based on analytical 
formulations, numerical methods like finite element analysis 
(FEA), and experimental testing. the mechanical behavior of 
the piping under routine loads like internal pressure and 
thermal loads, and under unusual and intermittent loads, 
including those of earthquakes, winds, special vibrations and 
water hammer of mechanical design practice, and their 
computational cost and time to solution can be prohibitive and 
costly to exploration of design space and slows development 
cycles [5]. 

Stress prediction with the help of AI is one of the 
promising cases of the extension of conventional stress 
analysis techniques. The artificial intelligence methods allow 
the quick estimation of stress distributions by learning 
nonlinear connection between design factors, material 
characteristics, and loading factors and stress reactions 
without having to solve governing equations repeatedly [6][7]. 
Such AI-assisted models are used in mechanical design 
processes, and can serve to complement physics-based 
simulations, where they are used to rapidly screen design 
options and locate problem areas of design at early design 
stages[8]. This interdependence of mechanical design goals 
and data-driven intelligence is a transition to more efficient 
and responsive design. 

The stress analysis AI concept is also enlarged by the 
involvement of advanced machine learning and deep learning 
architectures that can process high-dimensional data and 
complex geometries [9][10][11]. The trained models designed 
by simulation or experiment data can reproduce the complex 
pattern of stress, which is hard to estimate under simple 
analytical conditions. hybrid methods using AI and physics-
based constraints improve the quality of predictions and at the 
same time make it physically consistent [12]. AI-driven stress 
analysis that enhances performance in computational domains 
and helps make more decisions in real-time in the field of 
mechanical design the quality of information, the integration 
of physical laws in theories of learning, as well as the 
verification of the predictions made by AI in terms of 
numerical and experimental factors [13][14]. AI-assisted 
stress prediction is a convergence point where the principles 
of mechanical design, the methods of stress analysis and 
artificial intelligence are all involved in the promotion of 
intelligent engineering systems. 

II. CONVENTIONAL STRESS ANALYSIS IN MECHANICAL 

DESIGN 

pipe stress analysis can help improve system integrity, 
preventing issues such as leaks, equipment failure, foundation 
stress cracking or anchor bolt failure. This preventive measure 
can extend equipment life and reduce costs for system 
operations and maintenance stress Analysis in pressure vessel 
nozzles.. Pressure vessels cause applied loads to be tensile on 
the internal region of the pipe wall and compressive in the 
external region [15]. These stresses are principal factors that 
tend to affect plastic deformation. Current practices include 
using Finite Element Analysis (FEA) to model stress 
distribution and/ or to test material performance. the PVC is 
fast becoming popular due to its inexpensive the following to 
increase pipe life:fluid load limits, pressure, and strain. 
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A. Inputs for Piping Stress Analysis 

Stress Isometric from piping designer, P&ID & Line 
Designation Table (LDT from process department, Equipment 
GAD and other vendor data from the mechanical group.PFD 
the process department, Specification of piping (PMS) from 
the piping material group, All control valves and other valve 
data from Instrumentation. Project-specific nozzle allowable 
standard, overall plot plan, and area plot plan for finding HPP 
elevation and equipment orientation from piping layout group: 

Governing codes and standards for pipe stress analysis 

• ASME B31.3: Process piping Code  

• Centrifugal Pumps: API 610  

• Centrifugal Compressors: API 617 

B. Stress Analysis of Pump Piping System 

The analysis of pump piping consists of suction and 
discharge piping. The static analysis and modal analysis of 
suction and discharge lines of Pump One of the piping unit's 
refinery systems consists of 2 pumps with two suction and 
discharge nozzles [16]. The pump piping loads exerted on the 
pump discharge nozzles have exceeded the pump 
manufacturer's limit. It is required to bring the nozzle loads 
within the limit by stress analysis (static) of the pump piping 
system. The static analysis of the complete system is 
performed in finite element analysis software (CAESAR-II), 
see in Figure 1. It includes finalizing the piping system routing 
and supports. 

 

Fig. 1.  CAESAR-II Model 

CAESAR-II is a basic tool to the piping stress analysis 
exercise which offers various functions to the user. Through 
accurate forecasting of stresses and deformations 

C. Optimization of piping 

The design and cost comparison among the cases 
optimization. However, these are not being used in 
consultancies due to many drawbacks like time, cost, etc. For 
this project, the optimization is achieved mainly by material 
optimization and engineered support, resulting in cost 
optimization cases are being analyzed in terms of the cost of 
material used in the piping. 

D. Stress Evaluation 

The standard-purpose FEA codes will not consider the 
supports' geometric properties, valve data, and engineered 
support. Constructing the analytical models for each load case 
scenario is of utmost critical. Moreover, the evaluation of 
allowable stresses for each load case is very strenuous. So, 
CAESAR-II program was used in this research, which is used 
in all the process industry. From the below Figure 2, software 
modelling is done as per stress isometric. 

 

Fig. 2.  Temperature Profile for A Two-Pump System Isometric Views. 

Procedure of the piping modelling piping system part 
Node and coordinates of the piping system Piping parameters” 
(like length, diameter, and schedule), complete the equipment 
modelling and then start modelling the piping based on piping 
isometric drawing. Always make a closed system to get the 
correct results. Typically, pump lines are connected to heat 
exchanger, horizontal or vertical vessel and tank. 

1) Finite Elements Methods 
The process of creating a model, which is a representation 

of how a system of interest is constructed and operates, is 
called modelling [17]. A model is a simplified version of the 
system it depicts. A model's ability to help analysts forecast 
the impact of system modifications is one of its goals. A model 
should, on the one hand, closely resemble the real system and 
include the majority of its unseen characteristics it is hard to 
comprehend and use. Realism and simplicity are wisely traded 
off in a good model. The geometrical model of the Pressure 
vessel is shown in Figure 3. 

 

Fig. 3. Geometrical Model of Pressure Vessel 

Hyper mesh 9.0 is utilized for finite element modelling. 
Hyper Mesh is a powerful pre- and post-processor for finite 
element solvers that aids in the design process in a visually 
immersive and interactive setting. An essential part of finite 
element analysis. 

Popular FEM Software for Pressure Vessel Analysis 

• ANSYS: ANSYS is a popular software used for finite 
element analysis (FEA), which is great for studying 
how pressure vessels handle stress. It’s known for 
being flexible and powerful, making it a top choice for 
engineers. ANSYS is especially good at dealing with 
materials that don’t behave in simple ways, such as 
those that stretch or deform over time. 

• ABAQUS: ABAQUS is another widely used FEA 
software designed for the nonlinear and dynamic 
analysis and has traditionally been most effective for 
analyzing pressure vessels. Where stress concentration 
is highest. 
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2) Stress is Classified into Three Categories 
This section categorizes stress analysis into three distinct 

types: primary, secondary, and tertiary stresses [18]. providing 
a detailed explanation of each.Primary Stress: This type is 
created with the purpose of support stability against the 
external and internal loads and the moments Secondary Stress: 
This category of stress is caused due to displacement 
constraints for every structure member, for example the 
thermal expansion Tertiary Stress: This is known as the high 
stress which causes susceptibility to fatigue fracture which 
exists in heavily stressed areas The system is expected to be 
able to compute stresses like hoop, axial, and even bending 
stresses, among others.  

3) Pipe Support Impact to Pipe Stress Analysis  
stresses on a piping system is to ensure that the piping is 

well supported and does not fall or deflect under its own 
weight and also to ensure that the deflection is under the limit 
when thermal loading takes place. Stress analysis determines 
the forces exerted in the pipe, anchor points, restrains in piping 
system, stress induced in pipe stress and the effect of using 
pipe supports on the stress in the piping system [19]. The 
findings revealed that the type of support chosen, such as the 
gap and distance of pipe support, has a significant impact on 
the stress value in the piping system. The results of the 
analysis are carried out several times to get the stress value so 
that it does not exceed the allowable stress. The selection and 
location of these supports is based on the results obtained from 
displacement, stress, reaction and equipment nozzle analysis 
of the piping system. The design is in accordance with ASME 
B31.3, which is the standard code for process piping. The 
proposed method can be adapted for piping configuration of 
any industrial plant. 

4) Pipe Layout Impact to Pipe Stress Analysis 
piping system is mainly dependent on the Equipment 

Layout. While finalizing the location of equipment, the 
connecting piping flexibility is also to be considered along 
with the process flow, accessibility to valves, instruments, 
equipment maintenance, cleaning, operational safety, 
headroom clearance and aesthetics. The piping layout 
designer has to undergo number of iterations to reach to a final 
layout. Pipe Routing is always decided based on the 
Equipment layout. The design will have an impact on the 
design, material cost and safety of the plant. In the project, 
dimensions of pipe rack loops for a process plant are 
optimized based on temperature, pipe size, pressure etc. 

5) Standards for stress and displacement of pipelines 
CAESAR II is capable of choosing different stress 

validation standard according to different conditions. ASME 
B31.8 Gas Transportation and Distribution Piping Systems 
(ASME 2012c) is normally used for gas pipeline while ASME 
B31.4 Pipeline Transportation Systems for Liquids and 
Slurries (ASME 2012b) is used for oil pipeline[20]. For the 
validation of displacement (GB 50251; GB 50316), GB 50251 
Code for design of gas transmission pipeline engineering is 
used for transverse displacement validation and GB 50316-
2008 Design code for industrial metallic piping is used for 
axial displacement and angular displacement. 

a) Checking Stress 

the stress of pipeline in normal condition can be 
categorized as: primary stress, secondary stress, and peak 
stress. The primary stress represents the effect of internal 
pressure and gravity on the stress, secondary stress represents 

the effect of difference in temperature on the stress and peak 
stress is the combination of primary stress and secondary 
stress.The general Equation of stress validation is(1) 

 𝜎 ≤ 𝐹𝜎𝑠 () 

which σ represents stress; F is the design coefficient of 
which the values are listed in Table I; σs is the minimum yield 
strength of the pipeline material Primary stress is calculated as 
follows Equation (2) 

 𝜎𝐿 =
𝐹𝑎𝑥

𝐴
+

𝑃𝐷

4𝑆
+

𝑀

𝑊
 () 

where 𝜎𝐿  is primary stress, MPa Fax is additional axial 
force which is caused by pressure, N A is pipe cross-sectional 
area, mm2 P is pressure, MPa D is pipeline diameter, mm S is 
pipeline thickness, mm; M is synthetic bending moment,  W 
is bending section modulus, mm3.Secondary stress is 
calculated as follows Equation (3) 

 𝜎𝐸 =
𝑀𝐸

𝑊
 () 

where 𝜎𝐸  is secondary stress, MPa; ME is bending 
moment of thermal expansion, Nmm W is bending section 
modulus, mm3. 

TABLE I.  VALUES OF THE DESIGN COEFFICIENT (F) 

Stress type Gas pipeline Oil pipeline 

Peak stress 0.90 0.90 

Primary stress 0.75 0.72 

Secondary stress 0.72 0.90 

b) Checking Displacement 

Displacement validation focuses on transverse and axial 
displacement. GB 50251 Code for design of gas transmission 
pipeline engineering requires that transverse displacement 
does not exceed 0.03 times of the diameter of the pipeline. GB 
50316- 2008 Design code for industrial metallic piping 
requires that axial displacement does not exceed 0.4 time of 
the length of pipeline support. The angular displacement of a 
horizontal pipeline is generally required to be no greater than 
4°. 

III. AI-ASSISTED STRESS PREDICTION MODELS 

There are two approach machine learning and deep 
learning technique discussed below:  

A. Machine Learning Approach 

Machine learning (ML) and artificial intelligence (AI) are 
increasingly transforming mechanical engineering and 
machine systems[21]. These technologies enhance efficiency, 
reduce costs, and minimize errors in engineering processes, as 
shown in Figure 4 are given below: 

 

Fig. 4.  Demonstration of the Types Of Machine Learning 
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• Supervised learning forms the backbone of predictive 
modelling in mechanical engineering applications. 
This approach utilizes labelled training datasets to 
learn mapping functions between input features and 
target outputs. Common supervised learning 
algorithms extensively used. 

• Unsupervised learning techniques focus on 
discovering hidden patterns and structures within 
unlabelled datasets, making them invaluable for 
exploratory data analysis and feature extraction in civil 
engineering. 

• Reinforcement learning is an emerging AI technique in 
mechanical design that enables systems to learn 
optimal decisions through interaction with their 
environment based on reward-driven feedback. In 
stress prediction and structural optimization. 

1) KNN 
The KNN model is a statistical tool for estimating the 

value of an unknown point based on its nearest neighbours. 
Two simple techniques are used in this study: the Euclidean 
distance function d(x, y), provided in Equation (12), and the 
Manhattan distance function d(x, y), provided in Equation 
where x = (x1, where (x1. . . , xn), y = (y1, . . . , yn), and n is 
the vector size. The K neighbour point that has the shortest 
distance to the unknown point is used to estimate its value 
using Equation (4) 

 𝑦𝑖̂ = ∑ 𝑤𝑖𝑦𝑖
𝑛
𝑖=1  () 

Where 𝑤𝑖  is the weight of every single neighbor point 𝑦𝑖  
to the query point 𝑦𝑖̂. 

2) SVM 
Particularly effective for classification problems such as 

soil type identification and structural damage classification. 
SVMs excel in handling high-dimensional data and nonlinear 
relationships through kernel functions. 

B. Deep Learning Technique 

There are some deep learning approach are using ai stress 
prediction model of ANN, RNN and LSTM are discussed 
below: 

1) ANN 
The ANN model is based on the concept of the brain’s self-

learning ability, mimicking the human nervous system to 
process information the numbers of neurons and hidden layers 
are increased, the ability to handle nonlinearity improves. 
However, these conditions may result in high computational 

complexity, overfitting. ANN model, 𝑎𝑖
𝑙  is the ith activation 

element of the lth layer in the hidden layer. 𝑏𝑖
𝑙  is bias, 𝑎𝑖

𝑙  is 

equal to input value times weight𝑤𝑗𝑖
𝑙  and add the bias in 

Equation (5) 

 𝑧𝑖
𝑙 = ∑ 𝑤𝑗𝑖

𝑙 𝑎𝑖
𝑙 + 𝑏𝑖

𝑙𝑛
𝑖=1  () 

the input layer data combined with bias and weight to 
obtain some value. 

2) RNN 
RNN is a type of neural network that can model “time-

like”-series data, and it commonly adopts a nonlinear structure 
in deep learning. 

The ring-shaped neural network is expanded along the 
“time” axis, as shown in the right half of Figure 5, where the 
“time” step t and the hidden state st can be expressed as a 

function of the output from the previous (st−1) “time” steps 
and previous layers (xt). 

 

Fig. 5. Schematic Structure of Recurrent Neural Network 

3) LSTM 
advanced regularization and optimization techniques to 

improve the model’s performance. After normalizing the data 
using an LSTM model consisting of two LSTM layers, with 
128 hidden units and a 50% dropout to prevent overfitting. 
Batch normalization was applied to enhance stability and 
convergence. A fully connected layer makes the final 
prediction, followed by a Softmax activation to obtain 
probabilities. 

IV. ADVANTAGES AND LIMITATIONS OF AI-BASED STRESS 

PREDICTION 

The stress prediction AI methods provide huge advances 
in terms of computational efficiency, quick design 
assessment, and the capability to address non-linear stress 
patterns complicated by complex nonlinear stress behaviors 
than the traditional methods. Nonetheless, in spite of these 
strengths, issues connected with data dependency, model 
generalization, interpretability and reliability are still burning 
issues, as outlined below. 

A. Advantages of AI Stress Prediction In Mechanical 

Design 

1) High Predictive Accuracy 
AI models have the ability to reproduce complex and 

nonlinear relationships between two or more variables (e.g. 
geometry, material properties, loading conditions) that can 
often be more accurate than traditional analytical or empirical 
models. 

2) Quick Analysis and Time-Saving 
 AI-based models are capable of predicting the stress in 

near-instances after training, and they can save a lot of time in 
comparison to the finite element analysis (FEA) when used in 
large-scale or real-time. 

3) Cost Reduction 
By minimizing the need for repeated simulations, physical 

prototyping, and extensive experimental testing, AI-based 
stress prediction can lower overall design and validation costs. 

4) Capability to Handle Large and Complex Datasets 
AI methods are capable of processing high-dimensional 

data simulation, sensor or historical data, and thus they can be 
applied to complex structures and operating conditions. 

5) Support for Real-Time Monitoring and Decision-Making 
AI models can be used to support real-time estimation of 

stress, early fault detection, and predictive maintenance when 
combined with sensor data and digital twins.. 
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B. Limitation of AI Stress Prediction In Mechanical Design 

1) Data Quality and Coverage 
Stress prediction models based on AI have a strong 

dependence on large, accurate, and representative datasets. 
When the training data is not comprehensive to encompass all 
the relevant geometries, boundary conditions, loading cases 
and material behaviours, the model may make unreliable 
predictions. Noise, measurement errors or inconsistencies 

2) Limited Generalization and Extrapolation Ability 
The AIs tend to perform good in the region of the same 

conditions that the training data encompasses without 
extrapolating them. Extreme loading conditions or novel 
materials In the case of new designs, extreme loading 
conditions or new materials the prediction accuracy can 
greatly decrease and they should not be used in an early-stage 
or innovative engineering design. 

3) Lack of Physical Transparency and Interpretability 
A lot of AI models are black-box systems that do not 

provide much understanding of the physical concepts 
underlying stress distribution. This interpretability deficiency 
makes engineers more likely not to know whether the result is 
correct, how the failure occurred or what decisions were taken 
in making the design, especially in safety-related applications. 

4) High Computational Cost During Training Phase 
Though AI models offer rapid predictions after training, 

their training can be computationally costly, and particularly 
when it comes to deep learning structures. This is further 
expensive since simulation or experiments based on high 
fidelity generate training data. 

5) Sensitivity to Changing Operating Conditions 
Model drift due to variations in temperature, material 

degradation, corrosion, fatigue or varying conditions at the 
boundary with time, result in decreased model accuracy. To 
ensure stable performance, constant monitoring and recurrent 
retraining are necessary. 

V. LITERATURE OF REVIEW 

The reviewed literature highlights recent advancements in 
AI assisted stress prediction model in mechanical design. This 
Table II, The summary table systematically organizes research 
studies key findings, challenges are discussed below: 

Manguri, Saeed and Jankowski (2025) It offered 
adjustment and regulation of shape, stress, or both in 
structures and emphasizes such control’s importance. The 
control of systems is classified into three primary classes 
nodal movement control, axial force control, and controlling 
the two classes. Each class is thoroughly assessed,  to reduce 
the number of devices (actuators) to adjust and optimize 
actuators’ placement to achieve optimal structural control, 
considering the cost implications of numerous actuators [22]. 

Fatouma, Abdejallil and Omar (2025) stress tolerance 
analysis applying empirical values for levels in the lens. The 
main idea of this research study is to obtain a configuration 
performance with less stress tolerance for glass thermal effects 
in opto-mechanical instruments a theory to estimate the 
magnitude of the compression stress used at the glass-metal 
interface tensile stress can be statistically established for the 
lens under different cryogenic temperatures. stress tolerances 
is best performed by finite element analysis methods more 

efficient prediction of component failure from stress tolerance 
analysis and a more accurate prediction [23].   

Sotoodeh (2024) Oil and gas plants require piping 
components and systems to transport fluids and gases. A 
number of factors affect piping, including pressure, 
temperature, load, and flow. The purpose of this study is to 
prevent mechanical failure of piping a result of mechanical 
loads, which is called a piping stress analysis. piping failures 
caused by mechanical loads. This is done by applying stress 
analysis based on piping codes the first part examines piping 
stress analysis against principal stresses, stress analysis 
against sustained loads, occasional load analysis on the 
analysis of piping stresses of stresses related to piping reaction 
forces [24]. 

Sankardoss, Iei and Mimeche (2024) the significance of 
pipe support stiffness in both thermal expansion and seismic 
conditions. The actual support stiffness is included in the 
analysis by modelling the structural member using the 
CAESAR II software. Incorporating actual support stiffness is 
important because it helps accurately simulate the behavior of 
piping systems under different loading conditions, leading to 
more accurate and better decision-making during the design 
and operational stages actual support allows for a more 
optimal design, reduces the risk of failure due to excessive 
stresses and improves overall piping system performance [25]. 

Tiwari et al. (2024) Machine learning (ML) is a promising 
approach for forecasting the fatigue life of components an 
effective approach for reliably estimating the fatigue lifespan 
of mechanical components beneath uniaxial loads in high-
cycle fatigue conditions. circumstances, notch shapes, and 
fatigue lifetimes. Conventional techniques have depended 
heavily on any of the mechanical reaction characteristics, like 
strain, stress, or power variables can be used well to estimate 
fatigue lifespan, with stress-based estimates being the most 
accurate. Gradient boosters and Random Forest outperform all 
other ML techniques tested a considerable enhancement in 
prediction accuracy obtained by adding novel data acquired 
using the Basque formula [26] 

Hovanec et al. (2023) mechanical-stress prediction using 
a NN is described. The method essentially replaces finite 
element methods (FEMs), which require large amounts of 
time. as the NN predicts the mechanical ATT stress in 0.00046 
s, whereas the solution time using FEM is 1716 s for the same 
load step. whereas the novel method calculated the ATT stress 
for 36 regimes in 0.0166 the development of a method that can 
predict. The partial results from the experimental tensile tests 
are also presented, and they are used for FEM calculations 
[27]. 

Chen et al. (2022) mechanical stress distribution in a 
representative stator core with models of increasing fidelity, 
starting from the basic analytical hoop stress model with a 
simplified back-iron ring to a machine level stress model with 
stator teeth, windings, slot liners, winding insulations and slot 
wedges. The impact of windings and stator teeth on the 
accuracy of the mechanical stress model of the windings and 
the associated insulations, slot liners and wedges for an 
accurate prediction of mechanical stress that the core loss in 
the stator core can be underestimated by ∼10–20% if the 
mechanical stress caused by shrink fit process is neglected 
[28] 
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TABLE II.  SUMMARY OF LITERATURE REVIEW OF AI ASSISTED STRESS PREDICTION MODEL IN MECHANICAL DESIGN 

Author 

(Year) 

Study On Challenges 

Addressed 

Key Findings Limitations Future Work 

Manguri, 

Saeed & 

Jankowski 
(2025) 

Structural shape 

and stress control 

using actuator-
based systems 

High cost and 

complexity due to 

large number of 
actuators; optimal 

actuator placement 

Classified control systems into 

nodal movement control, axial 

force control, and combined 
control; demonstrated reduction in 

actuators while maintaining 

effective stress and shape control 

Limited consideration 

of real-time 

adaptability and 
nonlinear structural 

behavior 

Integration of 

intelligent 

optimization and AI-
based actuator 

placement strategies 

Fatouma, 

Abdejallil & 

Omar (2025) 

Stress tolerance 

analysis of glass 

lenses under 
cryogenic 

conditions 

Accurate estimation of 

tensile and 

compressive stress at 
glass–metal interfaces 

Established a statistical approach 

for stress tolerance using FEA; 

improved prediction of failure due 
to thermal effects 

Heavily dependent on 

empirical data and 

FEM accuracy 

Incorporation of AI-

driven surrogate 

models for faster 
stress tolerance 

prediction 

Sotoodeh, 

(2024) 

Piping stress 

analysis in oil and 
gas plants 

Mechanical failure due 

to pressure, 
temperature, sustained 

and occasional loads 

Demonstrated effectiveness of 

code-based stress analysis in 
preventing piping failures; 

evaluated principal and reaction 

stresses 

Conventional analysis 

is time-consuming 
and sensitive to 

modeling assumptions 

AI-assisted stress 

monitoring and 
predictive 

maintenance for 

piping systems 

Sankardoss, 

Iei & 

Mimeche 
(2024) 

Effect of pipe 

support stiffness 

under thermal and 
seismic loading 

Inaccurate modeling of 

actual support stiffness 

in piping systems 

Showed that incorporating real 

support stiffness using CAESAR 

II improves accuracy and system 
reliability 

Software-based 

approach limited by 

predefined modeling 
capabilities 

Development of 

intelligent digital 

twins integrating real-
time stiffness data 

Tiwari et al. 

(2024) 

Machine learning–

based fatigue life 
prediction under 

high-cycle fatigue 

Reliable fatigue life 

estimation across 
varying notch shapes 

and stress levels 

Gradient Boosting and Random 

Forest models outperformed 
traditional methods; stress-based 

features yielded highest accuracy 

Limited 

generalization outside 
trained datasets 

Expansion to 

multiaxial loading 
and physics-informed 

ML models 

Hovanec et al. 

(2023) 

Neural network–

based mechanical 
stress prediction 

Extremely high 

computation time of 
FEM simulations 

NN predicted stress in 

milliseconds compared to hours 
using FEM; validated using 

experimental tensile data 

Model accuracy 

dependent on training 
data quality and range 

Hybrid FEM–NN 

frameworks and 
broader experimental 

validation 

Chen et al. 
(2022) 

Mechanical stress 
modeling in stator 

cores of electrical 

machines 

Underestimation of 
stress effects due to 

simplified analytical 

models 

Demonstrated that neglecting 
shrink-fit stress leads to 10–20% 

underestimation of core loss; 

higher-fidelity models improve 
accuracy 

Increased 
computational 

complexity with 

higher model fidelity 

AI-assisted reduced-
order models for 

accurate yet efficient 

stress prediction 

 

VI. CONCLUSION WITH FUTURE WORK 

AI, assisted stress prediction models in mechanical design 
have been the main topic of discussion, emphasizing their 
increasing importance in overcoming the limitations of 
traditional methods of stress analysis. Conventional methods 
such as analytical formulations, finite element analysis, and 
experimental testing are still the main tools for ensuring 
structural safety and compliance with design codes; however, 
their intensive computational resource and time requirements 
limit rapid design iterations and real, time applications. AI, 
based stress prediction models have shown remarkable 
potential by providing quick, cost, effective, and accurate 
estimation of stress responses through data, driven learning of 
complex nonlinear relationships among geometry, material 
properties, and loading conditions. These models facilitate 
early, stage design evaluation, allow for the efficient 
optimization of design, and, when combined with sensor data 
and digital twins, enable condition monitoring and predictive 
maintenance. However, the issues of data dependency, limited 
generalization beyond trained domains, lack of physical 
interpretability. Future research should be the creation of 
hybrid physics, informed AI models that incorporate the 
mechanical principles governing the phenomena into the 
learning frameworks to increase the models' reliability and 
explain ability. a large volume of quality data sets through 
state, of, the, art simulations and experimental validation will 
improve the models' robustness. Moreover, the coupling of 
AI, assisted stress prediction with on, line monitoring systems, 
digital twins, and adaptive retraining protocols is an intriguing 
prospect. 
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