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Abstract—The electricity transport system relies on
transmission lines, which remain vulnerable to faults that can
cut off operations and cost the system massive monetary losses.
Transmission lines are very crucial over long distances in
delivering electricity, but they also have reliability problems.
Images of defects that might disrupt the power supply and put
people in risk accompany reliability. Therefore, this study uses
machine learning on the Electrical Fault Detection and
Classification dataset from Kaggle, which comprises voltage and
current observations from an 11 kV transmission system. Two
models, K-Nearest Neighbors (KNN) and Long Short-Term
Memory (LSTM), were constructed following data preparation,
which included label encoding and Minmax normalization. The
models' performance was then evaluated using metrics such as
confusion matrices, accuracy (Acc), precision (Prec), recall
(Rec), and F1-score. KNN offered the highest Acc of 99.72, high
Prec of 99.99, high Rec of 99.55, and a high F1-score of 99.77,
and hence it beats LSTM and the earlier Random Forest and
Decision Tree tricks. In addition, the LSTM model
demonstrated a high performance also since the training and
validation loss were both stable and convergent, which indicates
that learning was effective. The above findings indicate that
machine learning, including multi-feature fusion, is significant
to enhance the accuracy of electrical fault detection; thus, a very
precise and reliable solution can be offered to minimize the loss
of time and improve the safety of power transmission networks.

Keywords—Electrical Fault Detection, Fault Classification,
Power System Reliability, Transmission Lines, Power Plant.

1. INTRODUCTION

As the primary source of electromechanical energy
conversion used in manufacturing, transportation, and
renewable energy production, electric machines serve as the
foundation of contemporary industrial infrastructure [1][2].
Their efficient operation is essential to economic stability and
industrial productivity throughout the many industries of oil
and gas, automotive, aerospace, and power generation. These
machines alone, along with the systems they power, consume
more than 40% of the world's electricity[3].

A vital resource that is probably becoming more and more
limited globally is electrical energy [4]. Its rarity might be
addressed in the following bi-fold manner. The latter is
improved load management and energy demand forecasting,
while the former is increased capacity generation [5]. An
emerging trend in electrical energy forecasting and
management is data-driven electrical energy efficiency
management [6][7]. Electricity energy management, data
science, and Al have come together to provide the most
accurate and reliable system for managing energy use.
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Electrical power systems are complicated and
interconnected, and therefore prone to disturbances and
malfunctions [8][9]. Due to the reliance on massive power
plants and linked networks, this is a vulnerability, and any
failures would spread swiftly. In order to guarantee timely
remedial actions and prevent interruptions, fault detection and
categorization are crucial [10][11][12]. The most important
issues are to determine the circumstances leading to
disturbances, to identify the vulnerable elements and to be
aware of how network structures contribute to the propagation
of faults [13][14][15]. The scope of fault detection can be
related to simple visual inspection and complex Al-based
diagnostics. Manual checks, which are considered traditional
methods, contribute to the detection of issues such as broken
cables.

Machine learning algorithms used as a fault prediction
application may enhance the strength of the power
transmission system [16]. As a result of the need for solutions
for predictive maintenance and the reduction in complexity of
industrial systems, the incorporation of Al into fault diagnosis
systems has significantly expedited [17][18]. Expert systems,
fuzzy logic, and neural networks are the Al methods that have
shown more effectiveness in detecting weak defect patterns
and changed operating circumstances [19]. Over the past
years, machine learning (ML) has been gaining popularity in
building systems using automated fault detection and
diagnostics (AFDD) [20]. More complicated defect patterns
are being found using ML, and particularly DL with CNN and
RNN types, which are more adaptable and less reliant on
expert knowledge. Concurrently, tools that integrate model-
and data-based diagnostics are showing promise for
enhancing the accuracy and resilience of fault categorization
[21].

A. Motivation and Contributions of the Study

The key purpose of this is to come up with a method that
will enhance the reliability and safety of the power
transmission system in such a way that even minor and
inconspicuous failures would not result in blackouts, damage
to equipment, or operational hazards. Traditional detection
methods are often not very fast or precise, leading to the
exploration of machine learning as a more intelligent, data-
driven approach. This, in turn, will result in faster, more
reliable responses, less downtime, and greater stability of
transmission networks.

e The dataset for Electrical Fault Detection and
Classification was used, containing real current and
voltage measurements, thus providing a realistic and
reliable base for model building.
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e Two machine learning models, KNN and LSTM, are
developed and deployed to increase the precision of
fault detection using multi-feature electrical signals.

e To completely evaluate the diagnostic power of every
model, a detailed performance evaluation using
various factors that included acc, prec, rec, Flscore,
and confusion matrices was conducted.

e The practical significance of ML-driven fault has been
disclosed, providing a reliable and quick approach that
can contribute to the safety of the operations, reduce
the stoppages, and contribute to the smarter monitoring
of the transmission system.

B. Justification and Novelty

The justification for this study is the increasing need for
more precise and intelligent methods to detect faults in rapidly
evolving power transmission systems. In such systems, the use
of traditional methods is increasingly failing to provide timely
and reliable diagnoses. This research, therefore, by the use of
real electrical measurements and the application of advanced
ML techniques, resolves the issues that are left by the
conventional methods. The study's originality is the complete
integration of multi-feature fusion, thorough preprocessing,
and comparative evaluation of both KNN and LSTM models
on a realistic fault dataset. Moreover, the finding that KNN
outperforms deep learning and classical models with almost
perfect accuracy opens up a new, very efficient way of fault
detection, which is simpler but more effective for the
implementation of the power networks in the real world.

C. Organization of the Paper

The paper is formatted as follows: Section II summarizes
relevant studies on electrical problem detection. Section III
describes the model's design and approach. Section IV
presents the experimental results. Section V summarizes the
study's findings and outlines future research targets.

II. LITERATURE REVIEW

The recent progress achieved through the use of ML and
DL techniques for the betterment of electrical fault detection
in inverters, HVDC networks, and circuits, etc., is the main
subject of this section. Different researchers have been
engaged in the activities of analyzing signals, extracting
features, and improving the overall detection accuracy for the
purpose of locating faults sooner and more reliably. Table I
also summarizes these studies and includes the description of
the methods, results, advantages, and limitations of each study
and shows how Al continues to enhance the detection of
faults.

Pushpavathi et al. (2025) concentrated on defect detection
and the determination of faulty inverter switches through
simulating different working conditions. Motor current
signature analysis (MCSA) data is used to support a deep
learning-based fault classification approach that combines
signal processing, feature extraction, and feature model

training. Experimental validation using data from a bench
setup confirmed the efficacy of the proposed approach. The
study emphasizes the Self Att-SGRU DL classifier's
exceptional performance, showing its potential for reliable
defect identification with an accuracy of 97.15% [22].

Dai and Shao (2025) combined the power system topology
and fault detection results, and an intelligent algorithm was
designed to realize rapid fault location and automatic
isolation. Experimental results show that Al model is superior
to traditional methods and support vector machine (SVM) in
fault detection accuracy, location speed and isolation
efficiency, with an accuracy of 98.5%, an average isolation
time of 0.2 seconds and a success rate of 98% [23].

Zhao and Peng (2024) decomposed by variational mode
decomposition, and the parameters of VMD are optimized by
the sparrow search algorithm, so that the number of
decomposition layers can be determined adaptively. Finally,
the fault feature vector is identified by the least squares
support vector machine recognition model for fault diagnosis.
The results show that the fault recognition rate is more than
97%, and the parallel arc fault of the inverter load is well
identified [24].

Liu and Pan (2024) detected that model only perform fault
analysis through current signal characteristics, ignoring
voltage and other signal characteristics. Based on the
traditional single-layer LSTM model, a series arc-fault
detection model combining LSTM and Transformer is
proposed, using voltage and current signals to identify faults.
Experimental findings demonstrate that the model achieves a
fault arc identification rate of about 97% across all operational
scenarios. It provides a feasible scheme for arc fault detection
in the electric vehicle electrical system [25].

He and Wang (2023) simulated circuit failures using a
back-propagating neural network, identified real-world faults
using the network, and input fault characteristics using the
network's output. It begins with an examination of the concept
of circuit fault diagnosis, then goes on to the extraction of
defect features from simulations of circuits, training of back-
propagating neural networks, and finally, verification of
simulation results. Using a neural network as its basis, the
experiment demonstrated that the circuit defect detection
system could achieve an accuracy rate of up to 94.4% [26].

Subramaniam et al. (2023) examined a range of potential
HVDC system failure scenarios and presented the findings of
each analysis. The multiple machine learning classifiers in
MATLAB were used to train and evaluate the retrieved data
for the different types of defects. Approximately eighty
thousand samples were used for training. According to the
findings, the COARSE classifier had an accuracy of 89.6%
and the MEDIUM classifier had an accuracy of 92.6%.
However, the FINE SVM classifier had the best accuracy of
96.9% [27].

TABLE I. OVERVIEW OF RECENT DETECTION OF DEFECTS IN THE ELECTRICAL SYSTEMS AND MACHINES BY MACHINE LEARNING

Reference Methods Results Advantages Limitations Recommendations
Pushpavathi MCSA-based deep learning | 97.15% accuracy. Robust detection; strong | Only current signals | Add multi-signal
et al. (2025) (Self Att-SGRU). feature extraction. are used. inputs.

Dai and Shao | Al algorithm for fault detection, | 98.5% accuracy; | Fastand highly accurate. | Limited to specific | Test on wider
(2025) location, and isolation. 0.2 s isolation. systems. topologies.

Zhao and | VMD + SSA optimization; LS- | 97% recognition. Adaptive decomposition; | High computational | Simplify for real-time
Peng (2024) SVM. good arc fault ID. load. use.

Liu and Pan | LSTM-Transformer using | 97% accuracy. Multi-signal, strong | Complex model | Optimize for embedded
(2024) voltage + current. performance. design. EV systems.
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He and Wang | BPNN  for circuit  fault | 94.4% accuracy. Simple and feasible. Lower accuracy vs | Upgrade to modern DL
(2023) diagnosis. deep learning. models.

Subramaniam | ML classification for HVDC | Fine SVM: 96,9 | Large dataset; good | Simulation-only; no | Integrate real system
et al. (2023) faults. %. comparison. real-time. data.

III. METHODOLOGY

The proposed methodology for creating the Electrical
Fault Detection dataset involves transforming labels into
numbers and scaling voltage and current features to a common
range. The next step was to split the data so that part was
utilized for model training and the rest for model performance
testing. Further, two models were applied: KNN and LSTM.
As shown in Figure. 1, criteria including acc, prec, rec, and
Flscore were ultimately used to assess the two models' fault-

detection ability.
Data Preprocessing

Electrical Fault
detection and

classification (Kaggle)
Data Split .
80% Train and 20% Test & | Label encoding
Normalization using Min
Max Scaler
p
Model Evaluation <
<

Accuracy, Precision, Recall Result
and F1-Score

Fig. 1. Flowchart of the Proposed ML-Based Electrical Fault Detection
System

A. Data Collection and Analysis

The Kaggle ! The Electrical Issue Detection and
Classification dataset is essential for improving power
transmission network issue detection. The transmission line
system, which consists of four 11 kV generators and
transformers, incorporates line currents and voltages that
occurred under different failure situations. This data set allows
one to develop algorithms that correctly detect and classify
faults, enhance the reliability of the network and reduce
downtime. The Binary classification data of 12001 rows and
9 columns is used to identify the presence of a fault.
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Fig. 2. Correlation Matrix of Current and Voltage Features

Figure. 2 shows the correlation coefficient between the
current and voltage characteristics, where the self-correlation
of all characteristics is 1. Some of the variables are moderately
correlated, such as Ib and Ic with the correlation of -0.38 and
Vb and Vc with -0.52. These numbers show that the features
interact significantly but not in a redundant way; thus, each
feature still contains unique information, which is valuable for
fault detection precision.

i

Fig. 3. Scatter Plots of the V-I Relations for Three-Phase Lines

Figure. 3 demonstrates the scatter plots depicting the
relationship of current and voltage for phases a, b, and c. The
plot of the current (Ia, Ib, Ic) and of the voltage (Va, Vb, Vc)
showed a typical elliptical pattern of the three-phase power
system. The same stable and balanced operation is indicated
by the uniform elliptical shapes in all phases, while the
minuscule fluctuations in point density signify the natural
signal variations.

B. Data Preprocessing

The process of data preprocessing was mainly aimed at
cleaning and organizing the dataset to make it easier to work
with and more dependable for the analysis. Indispensable
columns were deleted, sorted in a like manner, and the dataset
was modified so that all categories got an equal representation.
In a nutshell, the data preprocessing acted like a filter that
turned muddy raw data into a clear and well-balanced form
that was ready for accurate modelling.

C. Label Encoding

Label encoding is one of the most adopted encoding
schemes owing to the simplicity of the conversion
mechanism. The data values are converted to numbers from
the list of enumerations of the different values represented by
the feature. Although label encoding is easy to implement, it
produces implicit ordinality among the converted values even
though none exists.

D. Data Splitting

The dataset was split into 80% for training and 20% for
testing, based on its characteristics. This division was done so
that every scenario was adequately represented in both sets.

E. Normalization using Min Max Scaler

To normalize the feature dataset (Ia, Ib, Ic, Va, Vb, Vc¢) of
six features, Min Max Scaler from scikit-learn was used. The
features are scaled to a common range with this operation. It
helps to keep the feature-value relationships intact while

!https://www.kaggle.com/datasets/esathyaprakash/electrical -fault-detection-and-
classification/data
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avoiding training that is hindered by too large variations. If
normalization is not done, the loss function can oscillate very
much, thus slowing down or destabilizing model convergence.
Here min-max normalization was employed and its
mathematical expression is provided in Equation (1).
X—MIN(X)
MAX(X)-MIN(X) M)

F. Proposed Model for Electrical Fault

Machine learning designs predictive systems to uncover
meaningful patterns in data. In this research, a comparison was
made between KNN and LSTM models. KNN is a classifier
that uses auto-similarity, whereas LSTM recognizes traits in a
series of time. The performance of the two paradigms was
significantly different, as per the results.

1) K-Nearest Neighbors (KNN)

A non-parametric technique for classification, the k-NN
algorithm is used to address a variety of classification issues
[28]. This method of instance-based learning just uses local
area approximations of the function and postpones all
calculations until classification time. The majority vote of an
object's neighbors determines its categorization; therefore, it
is placed in the class that is most common among its KNN. A
fuzzy variant of the k-NN technique is frequently employed

2) Long Short-Term Memory (LSTM)

LSTM networks build an RNN during training [29]. In
binary classification, the output of the last time step is
subjected to a sigmoid activation function ¢ to get the final
prediction yLSTM(x). In particular, this prediction is
computed using the output layer's Bias Term by, the Weight
Matrix Wo, and the Hidden State h; (Equation 2a). The
prediction weight matrix yGRU(x) for each label k in the case
of multi-label classification is similarly computed by applying
the o function to the output of the last time step for that label,
utilizing the Hidden State h, Weight Matrix W and Bias
Term b¥ (Equation 2b).

YyGRU (x) = c(W,h; + b,) (2a)
YGRU(x) = a(Wh, + bl) (2b)
G. Model Evaluation

The confusion matrix, recall, accuracy, precision, and F1
score were among the measures used to assess the
performance of a classification model. Tables showing the
counts of TP, TN, FP, and FN make up the confusion matrix,
which gives a thorough picture of the model's performance.
The accuracy is determined by dividing the total number of
occurrences by the ratio of properly predicted cases (TP and
TN), as indicated in Equation (3).

Normalized Data =

TP+TN

Accuracy = ——
Y = IPTTN+FP+FN

3)

Accuracy indicates the model's overall accuracy but might
be deceptive in settings with imbalanced datasets, when
certain error kinds occur more frequently than others.
Precision measures the accuracy of positive predictions, as
shown in Equation (4), and is important when false positives
are substantial, such as when a problem is mistakenly
identified that does not exist. Recall, also known as sensitivity,
is determined by Equation (5), which evaluates the model's
capacity to accurately detect real flaws. This is crucial when
there might be detrimental effects on the functioning of the
power system from failing to detect a defect (false negatives).
As mentioned in Equation (6), the Flscore strikes a
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compromise between precision and recall, offering a single
measure that is helpful for handling uneven classes of defects.

TP

Precision = @
TP+FP
Recall = —=2 )
TP+FN
F1 — Score = 2x(PrecisionxRecall) ©

Precision+Recall

IV. RESULT ANALYSIS AND DISCUSSION

The main focus of the use of ML and DL techniques
involves multi-feature fusion to enhance electrical fault
detection. Experiments were carried out on a computer
running Windows 11, an Intel(R) Core (TM) i7-10750H CPU,
16 GB RAM, and an NVIDIA GTX 1650 GPU. As shown in
Table II, KNN, which is the best model among those tested,
including LSTM, has achieved very impressive results by
99.72% acc, 99.99% prec, 99.55% rec, and 99.77% Flscore.
The values for performance metrics are very close to 1, thus,
it indicates that the proposed approach has strong diagnostic
capability and is overall highly effective.

TABLE II. CLASSIFICATION METRICS FOR FAULT DETECTION SYSTEMS
Matrix KNN LSTM
Accuracy 99.72 99.25
Precision 99.99 99.63
Recall 99.55 99.72
F1 Score 99.77 99.17
Lees Over Rpacre Mocatecy Qv [pacta
| vl W i TR S
™ » f"v"v“ ML =
oLl
) -l
‘ ! s " !
5 m»
"/\\‘—'F\'—_— — ~
- » " o * ' e - " M

Fig. 4. LSTM Training and Validation Loss and Accuracy Over Epochs

Figure. 4 displays the decrease of both training and
validation losses to a great extent, and hence they stabilize at
values of approximately 0.02 and 0.03, respectively, which is
a clear indication of the model learning effectively and also
being able to generalize well. Moreover, the losses for train
and validation being very close together imply that no
overfitting or underfitting has occurred, which means that the
model has a stable and consistent performance on train and
validation data.

LSTM Confusion Matrix

True Label

0 1
Predicted Label

Fig. 5. Confusion Matrices of the LSTM Model
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The Confusion Matrix given in Figure. 5 shows the LSTM
classifier. The LSTM classifies 1302 examples of class 0 and
1081 of class 1 correctly with very rare misclassifications. The
matrix, in general, shows that LSTM achieves an extremely
high accuracy rate and a quality similar to that of reliability in
fault detection.

KNN Confusion Matrix

1192

True Label

0
Predicted Label

Fig. 6. Confusion Matrices of KNN Model

The K-nearest neighbor confusion matrix presented in
Figure. 6 shows superior model performance. The KNN
model correctly classifies all 1192 samples of class 0 and 1991
samples of class 1, with only 9 misclassified instances from
class 1 to class 0. The performance is more or less perfect,
showing that the KNN model for fault detection in accuracy
and reliability serves its purpose.

A. Comparison and Discussion

Table III details the results of the different machine-
learning models, KNN, LSTM, RF, and DT, used for electrical
fault detection. Among these, KNN is the most effective
across all performance metrics, achieving 99.72% accuracy,
99.99% prec, 99.55% recall, and 99.77% Flscore. LSTM is
also a very strong performer, with all its metrics above 99%,
while RF and DT are at considerably lower levels, with
accuracies of 89.45% and 85.76%, respectively. Therefore,
summarizes the comparison and shows that KNN and LSTM
outperform the traditional models; thus, the proposed multi-
feature fusion approach is more effective.

TABLE III. PERFORMANCE COMPARISON OF ML MODELS FOR
ELECTRICAL FAULT DETECTION

Matrix Accuracy | Precision Recall F1 Score
KNN 99.72 99.99 99.55 99.77
LSTM 99.25 99.63 99.72 99.17
RF [30] 89.45 87.5 87.5 87.5
DT [31] 85.76 85.79 85.76 85.76

The electrical fault detection is improved with the help of
the proposed multi-feature fusion method, which merges
several current and voltage features to models like KNN and
LSTM that can then find complex patterns in a more efficient
way. Consequently, the accuracy is raised, the system
reliability is improved, and the number of misclassifications is
reduced in comparison to conventional methods; thus, it is
very appropriate for a powerful and smart power system
monitoring.

V. CONCLUSION AND FUTURE SCOPE

The electricity generation, transmission, and distribution
processes were very important and paramount for the human
race's development. Hence, these three processes must operate
with high adequacy and very few faults. All systems are prone
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to faults to some extent, and, thus, ahead of time, fault
detection systems that are both accurate and efficient have to
be put in place to keep the system stable and safe. The study
confirms that, among others, machine learning, in particular
the KNN model, is a powerful ally in electrical fault detection,
as it provides the highest outcomes with 99.72% acc, 99.99%
prec, 99.55% recall, and a 99.77% Flscore, which is
significantly higher than both LSTM and conventional
classifiers. Moreover, the results of the study confirm that
KNN denoted a very effective, interpretable, and
computationally efficient solution for a real-time monitoring
application. On the other hand, the other side of the coin is that
the study was limited to one dataset only, which may not be
representative of all real-world situations and also by possible
models' sensitivity to noise or measurement variations. But
again, the results underscore the method's high diagnostic
capability and practicality. The study will, in the future,
address the use of diverse and real-time datasets, testing the
model strength in relation to noisy grid conditions as well as
combining different models such as CNN-LSTM hybrids,
Gradient Boosting Machines (GBM) and Transformer-based
architecture to achieve the accuracy, scalability and
adaptability of power system fault detection to a new level.
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