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Abstract—The electricity transport system relies on 

transmission lines, which remain vulnerable to faults that can 

cut off operations and cost the system massive monetary losses. 

Transmission lines are very crucial over long distances in 

delivering electricity, but they also have reliability problems. 

Images of defects that might disrupt the power supply and put 

people in risk accompany reliability.  Therefore, this study uses 

machine learning on the Electrical Fault Detection and 

Classification dataset from Kaggle, which comprises voltage and 

current observations from an 11 kV transmission system. Two 

models, K-Nearest Neighbors (KNN) and Long Short-Term 

Memory (LSTM), were constructed following data preparation, 

which included label encoding and Minmax normalization. The 

models' performance was then evaluated using metrics such as 

confusion matrices, accuracy (Acc), precision (Prec), recall 

(Rec), and F1-score. KNN offered the highest Acc of 99.72, high 

Prec of 99.99, high Rec of 99.55, and a high F1-score of 99.77, 

and hence it beats LSTM and the earlier Random Forest and 

Decision Tree tricks. In addition, the LSTM model 

demonstrated a high performance also since the training and 

validation loss were both stable and convergent, which indicates 

that learning was effective. The above findings indicate that 

machine learning, including multi-feature fusion, is significant 

to enhance the accuracy of electrical fault detection; thus, a very 

precise and reliable solution can be offered to minimize the loss 

of time and improve the safety of power transmission networks.  

Keywords—Electrical Fault Detection, Fault Classification, 

Power System Reliability, Transmission Lines, Power Plant.  

I. INTRODUCTION 

As the primary source of electromechanical energy 
conversion used in manufacturing, transportation, and 
renewable energy production, electric machines serve as the 
foundation of contemporary industrial infrastructure [1][2]. 
Their efficient operation is essential to economic stability and 
industrial productivity throughout the many industries of oil 
and gas, automotive, aerospace, and power generation. These 
machines alone, along with the systems they power, consume 
more than 40% of the world's electricity[3]. 

A vital resource that is probably becoming more and more 
limited globally is electrical energy [4]. Its rarity might be 
addressed in the following bi-fold manner. The latter is 
improved load management and energy demand forecasting, 
while the former is increased capacity generation [5]. An 
emerging trend in electrical energy forecasting and 
management is data-driven electrical energy efficiency 
management [6][7]. Electricity energy management, data 
science, and AI have come together to provide the most 
accurate and reliable system for managing energy use. 

Electrical power systems are complicated and 
interconnected, and therefore prone to disturbances and 
malfunctions [8][9]. Due to the reliance on massive power 
plants and linked networks, this is a vulnerability, and any 
failures would spread swiftly. In order to guarantee timely 
remedial actions and prevent interruptions, fault detection and 
categorization are crucial [10][11][12]. The most important 
issues are to determine the circumstances leading to 
disturbances, to identify the vulnerable elements and to be 
aware of how network structures contribute to the propagation 
of faults [13][14][15]. The scope of fault detection can be 
related to simple visual inspection and complex AI-based 
diagnostics. Manual checks, which are considered traditional 
methods, contribute to the detection of issues such as broken 
cables.  

Machine learning algorithms used as a fault prediction 
application may enhance the strength of the power 
transmission system [16]. As a result of the need for solutions 
for predictive maintenance and the reduction in complexity of 
industrial systems, the incorporation of AI into fault diagnosis 
systems has significantly expedited [17][18]. Expert systems, 
fuzzy logic, and neural networks are the AI methods that have 
shown more effectiveness in detecting weak defect patterns 
and changed operating circumstances [19]. Over the past 
years, machine learning (ML) has been gaining popularity in 
building systems using automated fault detection and 
diagnostics (AFDD) [20]. More complicated defect patterns 
are being found using ML, and particularly DL with CNN and 
RNN types, which are more adaptable and less reliant on 
expert knowledge. Concurrently, tools that integrate model-
and data-based diagnostics are showing promise for 
enhancing the accuracy and resilience of fault categorization 
[21]. 

A. Motivation and Contributions of the Study 

The key purpose of this is to come up with a method that 
will enhance the reliability and safety of the power 
transmission system in such a way that even minor and 
inconspicuous failures would not result in blackouts, damage 
to equipment, or operational hazards. Traditional detection 
methods are often not very fast or precise, leading to the 
exploration of machine learning as a more intelligent, data-
driven approach. This, in turn, will result in faster, more 
reliable responses, less downtime, and greater stability of 
transmission networks. 

• The dataset for Electrical Fault Detection and 
Classification was used, containing real current and 
voltage measurements, thus providing a realistic and 
reliable base for model building. 
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• Two machine learning models, KNN and LSTM, are 
developed and deployed to increase the precision of 
fault detection using multi-feature electrical signals. 

• To completely evaluate the diagnostic power of every 
model, a detailed performance evaluation using 
various factors that included acc, prec, rec, F1score, 
and confusion matrices was conducted. 

• The practical significance of ML-driven fault has been 
disclosed, providing a reliable and quick approach that 
can contribute to the safety of the operations, reduce 
the stoppages, and contribute to the smarter monitoring 
of the transmission system. 

B. Justification and Novelty  

The justification for this study is the increasing need for 
more precise and intelligent methods to detect faults in rapidly 
evolving power transmission systems. In such systems, the use 
of traditional methods is increasingly failing to provide timely 
and reliable diagnoses. This research, therefore, by the use of 
real electrical measurements and the application of advanced 
ML techniques, resolves the issues that are left by the 
conventional methods. The study's originality is the complete 
integration of multi-feature fusion, thorough preprocessing, 
and comparative evaluation of both KNN and LSTM models 
on a realistic fault dataset. Moreover, the finding that KNN 
outperforms deep learning and classical models with almost 
perfect accuracy opens up a new, very efficient way of fault 
detection, which is simpler but more effective for the 
implementation of the power networks in the real world. 

C. Organization of the Paper 

The paper is formatted as follows: Section II summarizes 
relevant studies on electrical problem detection. Section III 
describes the model's design and approach. Section IV 
presents the experimental results. Section V summarizes the 
study's findings and outlines future research targets. 

II. LITERATURE REVIEW 

The recent progress achieved through the use of ML and 
DL techniques for the betterment of electrical fault detection 
in inverters, HVDC networks, and circuits, etc., is the main 
subject of this section. Different researchers have been 
engaged in the activities of analyzing signals, extracting 
features, and improving the overall detection accuracy for the 
purpose of locating faults sooner and more reliably. Table I 
also summarizes these studies and includes the description of 
the methods, results, advantages, and limitations of each study 
and shows how AI continues to enhance the detection of 
faults. 

Pushpavathi et al. (2025) concentrated on defect detection 
and the determination of faulty inverter switches through 
simulating different working conditions. Motor current 
signature analysis (MCSA) data is used to support a deep 
learning-based fault classification approach that combines 
signal processing, feature extraction, and feature model 

training. Experimental validation using data from a bench 
setup confirmed the efficacy of the proposed approach. The 
study emphasizes the Self Att-SGRU DL classifier's 
exceptional performance, showing its potential for reliable 
defect identification with an accuracy of 97.15% [22].  

Dai and Shao (2025) combined the power system topology 
and fault detection results, and an intelligent algorithm was 
designed to realize rapid fault location and automatic 
isolation. Experimental results show that AI model is superior 
to traditional methods and support vector machine (SVM) in 
fault detection accuracy, location speed and isolation 
efficiency, with an accuracy of 98.5%, an average isolation 
time of 0.2 seconds and a success rate of 98% [23].  

Zhao and Peng (2024) decomposed by variational mode 
decomposition, and the parameters of VMD are optimized by 
the sparrow search algorithm, so that the number of 
decomposition layers can be determined adaptively. Finally, 
the fault feature vector is identified by the least squares 
support vector machine recognition model for fault diagnosis. 
The results show that the fault recognition rate is more than 
97%, and the parallel arc fault of the inverter load is well 
identified [24].  

Liu and Pan (2024) detected that model only perform fault 
analysis through current signal characteristics, ignoring 
voltage and other signal characteristics. Based on the 
traditional single-layer LSTM model, a series arc-fault 
detection model combining LSTM and Transformer is 
proposed, using voltage and current signals to identify faults. 
Experimental findings demonstrate that the model achieves a 
fault arc identification rate of about 97% across all operational 
scenarios. It provides a feasible scheme for arc fault detection 
in the electric vehicle electrical system [25]. 

He and Wang (2023) simulated circuit failures using a 
back-propagating neural network, identified real-world faults 
using the network, and input fault characteristics using the 
network's output. It begins with an examination of the concept 
of circuit fault diagnosis, then goes on to the extraction of 
defect features from simulations of circuits, training of back-
propagating neural networks, and finally, verification of 
simulation results. Using a neural network as its basis, the 
experiment demonstrated that the circuit defect detection 
system could achieve an accuracy rate of up to 94.4% [26].  

Subramaniam et al. (2023) examined a range of potential 
HVDC system failure scenarios and presented the findings of 
each analysis. The multiple machine learning classifiers in 
MATLAB were used to train and evaluate the retrieved data 
for the different types of defects. Approximately eighty 
thousand samples were used for training. According to the 
findings, the COARSE classifier had an accuracy of 89.6% 
and the MEDIUM classifier had an accuracy of 92.6%. 
However, the FINE SVM classifier had the best accuracy of 
96.9% [27]. 

TABLE I.  OVERVIEW OF RECENT DETECTION OF DEFECTS IN THE ELECTRICAL SYSTEMS AND MACHINES BY MACHINE LEARNING 

Reference Methods Results Advantages Limitations Recommendations 

Pushpavathi 
et al. (2025) 

MCSA-based deep learning 
(Self Att-SGRU). 

97.15% accuracy. Robust detection; strong 
feature extraction. 

Only current signals 
are used. 

Add multi-signal 
inputs. 

Dai and Shao 

(2025) 

AI algorithm for fault detection, 

location, and isolation. 

98.5% accuracy; 

0.2 s isolation. 

Fast and highly accurate. Limited to specific 

systems. 

Test on wider 

topologies. 

Zhao and 
Peng (2024) 

VMD + SSA optimization; LS-
SVM. 

97% recognition. Adaptive decomposition; 
good arc fault ID. 

High computational 
load. 

Simplify for real-time 
use. 

Liu and Pan 

(2024) 

LSTM–Transformer using 

voltage + current. 

97% accuracy. Multi-signal, strong 

performance. 

Complex model 

design. 

Optimize for embedded 

EV systems. 



Dr. P Gautam, Journal of Global Research in Electronics and Communication, 1 (12) December 2025, 43-48 

© JGREC 2025, All Rights Reserved  45 

 

He and Wang 
(2023) 

BPNN for circuit fault 
diagnosis. 

94.4% accuracy. Simple and feasible. Lower accuracy vs 
deep learning. 

Upgrade to modern DL 
models. 

Subramaniam 

et al. (2023) 

ML classification for HVDC 

faults. 

Fine SVM: 96,9 

%. 

Large dataset; good 

comparison. 

Simulation-only; no 

real-time. 

Integrate real system 

data. 

III. METHODOLOGY 

The proposed methodology for creating the Electrical 
Fault Detection dataset involves transforming labels into 
numbers and scaling voltage and current features to a common 
range. The next step was to split the data so that part was 
utilized for model training and the rest for model performance 
testing. Further, two models were applied: KNN and LSTM. 
As shown in Figure. 1, criteria including acc, prec, rec, and 
F1score were ultimately used to assess the two models' fault-
detection ability. 

 

Fig. 1. Flowchart of the Proposed ML-Based Electrical Fault Detection 

System 

A. Data Collection and Analysis 

The Kaggle 1  The Electrical Issue Detection and 
Classification dataset is essential for improving power 
transmission network issue detection. The transmission line 
system, which consists of four 11 kV generators and 
transformers, incorporates line currents and voltages that 
occurred under different failure situations. This data set allows 
one to develop algorithms that correctly detect and classify 
faults, enhance the reliability of the network and reduce 
downtime. The Binary classification data of 12001 rows and 
9 columns is used to identify the presence of a fault. 

 
Fig. 2. Correlation Matrix of Current and Voltage Features 

 
1 https://www.kaggle.com/datasets/esathyaprakash/electrical-fault-detection-and-

classification/data 

Figure. 2 shows the correlation coefficient between the 
current and voltage characteristics, where the self-correlation 
of all characteristics is 1. Some of the variables are moderately 
correlated, such as Ib and Ic with the correlation of -0.38 and 
Vb and Vc with -0.52. These numbers show that the features 
interact significantly but not in a redundant way; thus, each 
feature still contains unique information, which is valuable for 
fault detection precision. 

 

Fig. 3. Scatter Plots of the V-I Relations for Three-Phase Lines 

Figure. 3 demonstrates the scatter plots depicting the 
relationship of current and voltage for phases a, b, and c. The 
plot of the current (Ia, Ib, Ic) and of the voltage (Va, Vb, Vc) 
showed a typical elliptical pattern of the three-phase power 
system. The same stable and balanced operation is indicated 
by the uniform elliptical shapes in all phases, while the 
minuscule fluctuations in point density signify the natural 
signal variations. 

B. Data Preprocessing 

The process of data preprocessing was mainly aimed at 
cleaning and organizing the dataset to make it easier to work 
with and more dependable for the analysis. Indispensable 
columns were deleted, sorted in a like manner, and the dataset 
was modified so that all categories got an equal representation. 
In a nutshell, the data preprocessing acted like a filter that 
turned muddy raw data into a clear and well-balanced form 
that was ready for accurate modelling. 

C. Label Encoding 

Label encoding is one of the most adopted encoding 
schemes owing to the simplicity of the conversion 
mechanism. The data values are converted to numbers from 
the list of enumerations of the different values represented by 
the feature. Although label encoding is easy to implement, it 
produces implicit ordinality among the converted values even 
though none exists. 

D. Data Splitting 

The dataset was split into 80% for training and 20% for 
testing, based on its characteristics. This division was done so 
that every scenario was adequately represented in both sets. 

E. Normalization using Min Max Scaler   

To normalize the feature dataset (Ia, Ib, Ic, Va, Vb, Vc) of 
six features, Min Max Scaler from scikit-learn was used. The 
features are scaled to a common range with this operation. It 
helps to keep the feature-value relationships intact while 
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detection and 

classification (Kaggle) 
 Data Preprocessing 
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80% Train and 20% Test 

Normalization using Min 
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Model Evaluation  

KNN AND LSTM 

 

Proposed Models 

Accuracy, Precision, Recall 
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Result 
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https://www.kaggle.com/datasets/esathyaprakash/electrical-fault-detection-and-classification/data
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avoiding training that is hindered by too large variations. If 
normalization is not done, the loss function can oscillate very 
much, thus slowing down or destabilizing model convergence. 
Here min-max normalization was employed and its 
mathematical expression is provided in Equation (1). 

 Normalized Data =
𝑋−𝑀𝐼𝑁(𝑋)

𝑀𝐴𝑋(𝑋)−𝑀𝐼𝑁(𝑋)
 () 

F. Proposed Model for Electrical Fault  

Machine learning designs predictive systems to uncover 
meaningful patterns in data. In this research, a comparison was 
made between KNN and LSTM models. KNN is a classifier 
that uses auto-similarity, whereas LSTM recognizes traits in a 
series of time. The performance of the two paradigms was 
significantly different, as per the results.  

1) K-Nearest Neighbors (KNN) 
A non-parametric technique for classification, the k-NN 

algorithm is used to address a variety of classification issues 
[28]. This method of instance-based learning just uses local 
area approximations of the function and postpones all 
calculations until classification time. The majority vote of an 
object's neighbors determines its categorization; therefore, it 
is placed in the class that is most common among its kNN. A 
fuzzy variant of the k-NN technique is frequently employed 

2) Long Short-Term Memory (LSTM) 
LSTM networks build an RNN during training [29]. In 

binary classification, the output of the last time step is 
subjected to a sigmoid activation function σ to get the final 
prediction yLSTM(x). In particular, this prediction is 
computed using the output layer's Bias Term b0, the Weight 
Matrix Wo, and the Hidden State ht (Equation 2a). The 
prediction weight matrix yGRU(x) for each label k in the case 
of multi-label classification is similarly computed by applying 
the σ function to the output of the last time step for that label, 

utilizing the Hidden State ht Weight Matrix 𝑊𝑜
𝑘  and Bias 

Term 𝑏𝑜
𝑘 (Equation 2b). 

 𝑦𝐺𝑅𝑈(𝑥) = 𝜎(𝑊𝑜ℎ𝑡 + 𝑏𝑜)  (2a)  

 𝑦𝐺𝑅𝑈(𝑥)𝑘 = 𝜎(𝑊𝑜
𝑘ℎ𝑡 + 𝑏𝑜

𝑘)  (2b)  

G. Model Evaluation 

The confusion matrix, recall, accuracy, precision, and F1 
score were among the measures used to assess the 
performance of a classification model. Tables showing the 
counts of TP, TN, FP, and FN make up the confusion matrix, 
which gives a thorough picture of the model's performance. 
The accuracy is determined by dividing the total number of 
occurrences by the ratio of properly predicted cases (TP and 
TN), as indicated in Equation (3). 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
   (3) 

Accuracy indicates the model's overall accuracy but might 
be deceptive in settings with imbalanced datasets, when 
certain error kinds occur more frequently than others. 
Precision measures the accuracy of positive predictions, as 
shown in Equation (4), and is important when false positives 
are substantial, such as when a problem is mistakenly 
identified that does not exist. Recall, also known as sensitivity, 
is determined by Equation (5), which evaluates the model's 
capacity to accurately detect real flaws. This is crucial when 
there might be detrimental effects on the functioning of the 
power system from failing to detect a defect (false negatives). 
As mentioned in Equation (6), the F1score strikes a 

compromise between precision and recall, offering a single 
measure that is helpful for handling uneven classes of defects. 

 Precision =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (4) 

 Recall =  
TP

TP+FN
   (5) 

 F1 − Score =
2×(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (6) 

IV. RESULT ANALYSIS AND DISCUSSION 

The main focus of the use of ML and DL techniques 
involves multi-feature fusion to enhance electrical fault 
detection. Experiments were carried out on a computer 
running Windows 11, an Intel(R) Core (TM) i7-10750H CPU, 
16 GB RAM, and an NVIDIA GTX 1650 GPU. As shown in 
Table II, KNN, which is the best model among those tested, 
including LSTM, has achieved very impressive results by 
99.72% acc, 99.99% prec, 99.55% rec, and 99.77% F1score. 
The values for performance metrics are very close to 1, thus, 
it indicates that the proposed approach has strong diagnostic 
capability and is overall highly effective. 

TABLE II.  CLASSIFICATION METRICS FOR FAULT DETECTION SYSTEMS 

Matrix KNN LSTM 

Accuracy 99.72 99.25 

Precision 99.99 99.63 

Recall 99.55 99.72 

F1 Score 99.77 99.17 

 

Fig. 4. LSTM Training and Validation Loss and Accuracy Over Epochs 

Figure. 4 displays the decrease of both training and 
validation losses to a great extent, and hence they stabilize at 
values of approximately 0.02 and 0.03, respectively, which is 
a clear indication of the model learning effectively and also 
being able to generalize well. Moreover, the losses for train 
and validation being very close together imply that no 
overfitting or underfitting has occurred, which means that the 
model has a stable and consistent performance on train and 
validation data. 

 

Fig. 5. Confusion Matrices of the LSTM Model 
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The Confusion Matrix given in Figure. 5 shows the LSTM 
classifier. The LSTM classifies 1302 examples of class 0 and 
1081 of class 1 correctly with very rare misclassifications. The 
matrix, in general, shows that LSTM achieves an extremely 
high accuracy rate and a quality similar to that of reliability in 
fault detection.  

 

Fig. 6. Confusion Matrices of KNN Model 

The K-nearest neighbor confusion matrix presented in 
Figure. 6 shows superior model performance. The KNN 
model correctly classifies all 1192 samples of class 0 and 1991 
samples of class 1, with only 9 misclassified instances from 
class 1 to class 0. The performance is more or less perfect, 
showing that the KNN model for fault detection in accuracy 
and reliability serves its purpose. 

A. Comparison and Discussion 

Table III details the results of the different machine-
learning models, KNN, LSTM, RF, and DT, used for electrical 
fault detection. Among these, KNN is the most effective 
across all performance metrics, achieving 99.72% accuracy, 
99.99% prec, 99.55% recall, and 99.77% F1score. LSTM is 
also a very strong performer, with all its metrics above 99%, 
while RF and DT are at considerably lower levels, with 
accuracies of 89.45% and 85.76%, respectively. Therefore, 
summarizes the comparison and shows that KNN and LSTM 
outperform the traditional models; thus, the proposed multi-
feature fusion approach is more effective. 

TABLE III.  PERFORMANCE COMPARISON OF ML MODELS FOR 

ELECTRICAL FAULT DETECTION 

Matrix Accuracy Precision Recall F1 Score 

KNN 99.72 99.99 99.55 99.77 

LSTM 99.25 99.63 99.72 99.17 

RF [30] 89.45 87.5 87.5 87.5 

DT [31] 85.76 85.79 85.76 85.76 

The electrical fault detection is improved with the help of 
the proposed multi-feature fusion method, which merges 
several current and voltage features to models like KNN and 
LSTM that can then find complex patterns in a more efficient 
way. Consequently, the accuracy is raised, the system 
reliability is improved, and the number of misclassifications is 
reduced in comparison to conventional methods; thus, it is 
very appropriate for a powerful and smart power system 
monitoring. 

V. CONCLUSION AND FUTURE SCOPE 

The electricity generation, transmission, and distribution 
processes were very important and paramount for the human 
race's development. Hence, these three processes must operate 
with high adequacy and very few faults. All systems are prone 

to faults to some extent, and, thus, ahead of time, fault 
detection systems that are both accurate and efficient have to 
be put in place to keep the system stable and safe. The study 
confirms that, among others, machine learning, in particular 
the KNN model, is a powerful ally in electrical fault detection, 
as it provides the highest outcomes with 99.72% acc, 99.99% 
prec, 99.55% recall, and a 99.77% F1score, which is 
significantly higher than both LSTM and conventional 
classifiers. Moreover, the results of the study confirm that 
KNN denoted a very effective, interpretable, and 
computationally efficient solution for a real-time monitoring 
application. On the other hand, the other side of the coin is that 
the study was limited to one dataset only, which may not be 
representative of all real-world situations and also by possible 
models' sensitivity to noise or measurement variations. But 
again, the results underscore the method's high diagnostic 
capability and practicality. The study will, in the future, 
address the use of diverse and real-time datasets, testing the 
model strength in relation to noisy grid conditions as well as 
combining different models such as CNN-LSTM hybrids, 
Gradient Boosting Machines (GBM) and Transformer-based 
architecture to achieve the accuracy, scalability and 
adaptability of power system fault detection to a new level. 
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