
R E V I E W P A P E R

Journal of Global Research in Electronics and Communication

Volume 1, No. 12, December, 2025
Available Online at: www.jgrec.info

© JGREC 2025, All Rights Reserved 55

AI-Powered Tools in Software Engineering

Applications in Code Generation and Quality

Assurance
Dr. Pradeep Laxkar

Associate Professor

Department of Computer Science and Engineering

ITM(SLS) University, Vadodara, Gujarat

Dpradeep.laxkar@gmail.com

Abstract—Modern software engineering is being red

financed by tools based on Artificial Intelligence (AI) and

specifically in the realms of the code generation, quality

assurance, and continuous integration and deployment (CI/CD).

Machine learning, deep learning, natural language processing,

and large language model and practice have made intelligent

systems shift of traditional rule-based automation to

collaborative development support. GitHub Copilot and

transformer-based models introduced by Open AI are examples

of tools which have shown significant advances in developer

productivity, code quality and automated error detection

through presented code suggestions and intelligent refactoring

options. In quality assurance, AI-based methods enable

automated test generation, defect prediction, and anomaly

detection, which help to make the process of manual testing

much easier and enhance the reliability of the software. In a

similar fashion, AI-based CI/CD pipelines make use of

predictive analytics and real-time performance inspection to

optimize build phases, identify deployment anomalies, and

improve system stability. Nonetheless, the implementation of AI

in software engineering also brings about issues of data quality,

interpretability of model, trust and ethics issues that should be

addressed to ensure responsible deployment the increase in the

significance of human AI cooperation and the attainment of

scalable, dependable, and ethically appropriate inclusion of AI

into modern software engineering practice.

Keywords—Artificial Intelligence, Software Engineering,

Code Generation, Quality Assurance, Large Language Models,

Machine Learning

I. INTRODUCTION

The dynamic nature of software engineering has been
highly affected by the development of Artificial Intelligence
(AI) that has shifted the paradigm of software-system
development and maintenance. AI-driven collaboration
systems [1]. Traditionally, AI applications in software
development were limited to rule-based programming
assistants or automated code generation models [2][3][4].
However, recent advancements in large language models
(LLMs) and multi-agent systems (MAS) have transformed the
role of AI from a mere auxiliary tool to an active collaborator
in the software engineering process. MAS enables multiple,
autonomously handling different aspects of software
development, from requirement analysis to debugging and
optimization.

AI-augmented code generation extensively in recent years,
especially with the rise of deep learning models trained on
massive codebases [5]. The tools can also create source code

and propose the best code structure by utilizing machine
learning models that have been trained on large-scale code
repositories, and can help the developer through intelligent
code completion and refactoring [6][7]. Rule-based
approaches and syntax-driven generation of transformer
models, like Open Ai’s GPT-based Codex and Google’s
BERT, has significantly improved AI’s ability to understand
context and generate human-like code. These models analyse
vast repositories of public code, learning patterns, best
practices, and common bugs, could reduce code-writing effort
by up to 30% [8]. AI-assisted coding accelerates code
development, especially in repetitive or boilerplate code and
can even enhance the quality of the code, such as by proposing
optimization.

AI-optimized code has become a new ground-breaking
strategy to deal with those issues [9][10]. The AI-based tools
can scan the pattern of a code, identify its inefficiency and
suggest or automatically make changes, using machine
learning, deep learning and reinforcement learning tools. [11].
These tools enhance the efficiency of CI pipelines by
identifying performance bottlenecks, predicting potential
failures, and ensuring that code adheres to best practices.
Despite its promise,

AI-powered code optimization faces several challenges,
including the need for high-quality training data, the
integration of AI models with existing CI workflows, and
concerns regarding interpretability and trust [12]. It delves
into the mechanisms of AI-powered code the improvement of
the quality of codes and reliability of the systems [13][14].
With the further evolution of AI technologies, the use of AI
will remake the software engineering standards, and AI-driven
development of software systems.

II. AI-BASED CODE GENERATION

Code generation is an automated process that converts
structured or unstructured input information (such as natural
language requirements descriptions, design documents, code
snippets, etc.) into source code (see Figure 1). Its essence is to
reflect the abstract intentions and task goals of the developers
into specific programming projects. And based on LLM (Larg
e Language Model) for code generation, by breaking down the
tasks, having data storage with long-term and short-term
memories, as well as the invocation of external tools, these are
currently important technical supports in the field of code
generation[15]. the application effects and code generation
quality of Codex and Co-pilot in the field of code generation.

Dr. P Laxkar, Journal of Global Research in Electronics and Communication, 1 (12) December, 2025, 55-61

© JGREC 2025, All Rights Reserved 56

Fig. 1. AI -based code generation

A. Types of AI Code Generation Tools

The AI code generators may be classified according to the
functionality and the automation degree they offer in the
software development life cycle in Figure 2. They are tools
that rely on methods like machine learning, deep learning, and
natural language processing to help developers write, refine,
and maintain code effectively.

Fig. 2. Types of AI code generation tools

1) Intelligent Code Completion Tools
These tools can help the developers as they can predict and

propose the code snippets, functions or even complete line of
code as they type in real time [16]. Intelligent code completion
tools can prevent syntax errors, increase coding productivity
and enforce compliance with programming by learning syntax
from existing large codebases and learning behave by
studying the behavior of developers. They are frequently
incorporated with current integrated development
environments (IDEs) the productivity of the developer.

2) Natural Language–to–Code Generation Tools
Natural language to code translators enables the

description by developers of the functionality in human
language, which is then converted into runnable source code.
The tools close the requirements implementation gap and
allow quicker prototyping and reduced the threshold of the
non-expert programmers. They are specifically handy when it
comes to generating boilerplate code, APIs and simple
application logic.

3) Program Synthesis Tools
Program synthesis tools are computer programs that use

formal specifications, constraints, or example inputs and
outputs to automatically generate complete programs or code
segments [17]. These tools may generate correct-by-design
code through reasoning over definitions of problems and are
useful in areas of high reliability.

4) Automated Bug Fixing and Code Repair Tools
The tools are aimed at identifying the errors and

automatically creating remedies to bugs in the source code.
AI-based code repair systems can use pattern recognition and

historical bug-fix data to propose patches or corrections,
dramatically cutting debugging time and enhancing software
reliability.

B. Automated Code Synthesis and Completion

Traditional code completion methods usually depend on
type information generated during compilation to predict the
next token. Since in static languages, types are fixed at
compile time, and type information is key information for
code completion, this method shows good Performance in
statically typed programming languages such as Java [18].
However, in dynamic programming languages (e.g., Python,
JavaScript), the type of a variable is determined at runtime and
can change as the program executes. To effectively solve this
problem, researchers began to use the naturalness of code for
code completion.

C. Program Translation and Refactoring

Refactoring operation is defined as the process of
changing a software system in such a way that it does not alter
the function of the code, yet improves its internal structure. It
is the art of modifying the design of a system without altering
its behavior, with the fundamental concept of behavior
preservation being central to refactoring operation. This
process is used to improve system maintainability and extend
its usable lifespan [19]. Refactoring operation is applied to
restructure design, eliminate, replace, or rewrite code to
improve its efficiency and understandability, or to transform
applications to use modern infrastructure support functions.
Refactoring operation improves design structure while
preserving the external behavior, and is one of the most used
techniques to ease software maintenance activities such as
adding new functionalities, correcting bugs, and modifying
code to improve quality.

D. Low-Code and No-Code Development Platforms

Low-code and no-code (LCNC) development platforms
are software development tools that enable users to build
applications with minimal or no coding experience. Low-code
platforms provide a visual development environment with
drag-and-drop components, pre-built templates, and limited
coding capabilities for customization [20]. No-code platforms
take this further by eliminating the need for coding, allowing
users to create applications through graphical interfaces and
logic-based workflows. These platforms democratize
application development, making it accessible to non-
technical users while also enhancing efficiency for
professional developers.

Key Features of LCNC Platforms

• Drag-and-Drop Interfaces: LCNC platforms offer
intuitive visual development environments, allowing
users to design applications by dragging and
dropping elements without writing code.

• Pre-Built Templates and Components: These
platforms provide ready-made templates and
reusable components, enabling faster development
and reducing the need for custom coding.

• API and Third-Party Integrations: LCNC tools
support seamless integration with external services,
databases, and APIs, enhancing functionality and
interoperability with existing systems.

• Automation and Workflow Management: Built-in
automation features allow users to create workflows,

Types of AI Code
Generation Tools

• Intelligent Code Completion Tools

•Program Synthesis Tools

•Automated Bug Fixing and Code
Repair Tools

•Natural Language–to–Code
Generation Tools

Dr. P Laxkar, Journal of Global Research in Electronics and Communication, 1 (12) December, 2025, 55-61

© JGREC 2025, All Rights Reserved 57

trigger actions, and streamline business processes
without manual intervention.

III. AI POWERED TOOL IN SOFTWARE ENGINEERING

 Artificial intelligence (AI) has caused basic changes in
different aspects of software creation. The combination of AI-
based tools and techniques has increased the efficiency,
precision, and flexibility of the software engineering
procedures [21]. This section examines the principal
applications of AI within software engineering, illustrating
how they revolutionize conventional techniques and augment
overall efficiency.

Selection Criteria for Tools and Datasets: The tools,
datasets, and examples included in this were selected based on
the following criteria:

• Relevance to Industry Applications: Tools and
datasets that are widely used in real-world software
engineering contexts, such as GitHub Co-pilot and
IBM’s defect prediction tools, were prioritized.

• Recency: Preference was given to tools and datasets
published or actively used within the past five years

to ensure that the study reflects the current state of
the field.

• Accessibility: Open-source datasets and tools with
publicly available documentation were selected to
facilitate reproducibility.

• Coverage of Development Phases: cover diverse
phases of the software development lifecycle,
including coding, testing, and maintenance [22].

• Impact and Adoption: The selection emphasized
tools and datasets with demonstrated effectiveness,
as reported in industry and academic studies.

A. Machine Learning and Deep Learning Techniques

Machine learning (ML) and deep learning (DL) have
greatly impacted many areas by providing sophisticated
technique for data analysis, prediction, and automation [23].
These technologies have played a major role in the
development of artificial intelligence (AI) innovations and
influenced industries like healthcare, finance, and
manufacturing. The methods and techniques in machine
learning and deep learning are presented in Table I.

TABLE I. METHOD AND TECHNIQUE IN MACHINE LEARNING PREDICTION IN AI TOOL IN SOFTWARE ENGINEERING

Sr.No Category Method/Technique Description Applications

1. Supervised
Learning

Linear Regression A statistical method to model and analyse the
relationship between a dependent variable and

one or more independent variables.

Predictive analytics, trend
forecasting, financial

modelling

Logistic Regression A classification technique used to predict the
probability of a binary outcome based on one or more

predictor variables.

Medical diagnosis, fraud
detection

Decision Trees A tree-structured model is used to make decisions and

predict outcomes by splitting data into branches based
on feature values.

Risk management,

classification tasks.

2. Un supervised
learning

K-Means Clustering A clustering technique that partitions data into k
clusters, where each data point belongs to the cluster

with the nearest mean.

Customer segmentation,
image compression

Hierarchical Clustering

A clustering method that builds a hierarchy of clusters
by either merging or splitting existing clusters.

Social network analysis,
genomic data analysis

Principal Component
Analysis (PCA)

A dimensionality reduction technique that transforms

data into a set of uncorrelated variables, called
principal components, ordered by the amount of

variance they capture.

Data visualization, noise

reduction

3. Reinforcemen

t
Learning

Q-Learning A model-free reinforcement learning

An algorithm that learns the value of an action in a
particular state by using a policy that maximizes

cumulative reward.

Robotics, game playing

Deep Q-Networks
(DQN)

A combination of Q-Learning with deep neural
networks, allowing the handling of high-dimensional

sensory inputs.

Autonomous
vehicles, gaming

4. Deep

Learning

Convolutional

Neural Networks
(CNN)

A class of deep learning models primarily used

for processing grid-like data structures such as
images by learning spatial hierarchies of

features.

Image and video

recognition,
medical image

analysis

 Recurrent Neural

Networks (RNN)

A class of neural networks designed for

sequence data, were connections between Nodes form

a directed graph along a temporal

sequence.

Time series

analysis, language

modelling, speech

recognition

Deep learning models: Deep learning, which is a branch of
machine learning, is the training of large neural networks with
multiple layers to learn intricate data representations.
Convolutional neural networks (CNNs) are leading in the
field of image and video processing because they capture
spatial hierarchies [24]. Recently, there have been
architectures such as Efficient Net, maximising the
performance with fewer parameters, and Vision Transformers
(ViTs), applying transformer models to image data to achieve
improved accuracy and scalability. Neural Networks,

Recurrent Neural Network, Recurrent Neural Networks
(RNNs), as well as their variations: Long Short-Term Memory
(LSTM) networks and Gated Recurrent Units (GRUs), are
important in the processing of sequential data, such as
language modelling and time-series prediction.

1) Explainable AI
As machine learning models, especially deep learning

models, continue to grow more complex, it has been necessary
to gain insight into how they make decisions. Explainable AI

Dr. P Laxkar, Journal of Global Research in Electronics and Communication, 1 (12) December, 2025, 55-61

© JGREC 2025, All Rights Reserved 58

(XAI) is dedicated to the goal of making predictions made by
models more understandable to humans. Individual prediction
explanations. Techniques such as LIME (Local Interpretable
Model-agnostic Explanations), SHAP (Shapley Additive
explanations) and integrated gradients can be applied to
explain a single prediction and learn about model behavior.

2) Federated Learning
Federated learning is a new method that allows the training

of models with decentralized devices/servers but local data.
The strategy ensures privacy and security because it does not
require the concentration of sensitive information. Federated
learning also comes in handy in those industries, where data
privacy is paramount, including healthcare and finance.
Recent studies in federated learning solve such issues as the
effectiveness of communication, heterogeneity of data, and
safety of aggregation to make the application robust and
scalable.

B. Natural Language Processing for Software Tasks

NLP-based software testing is faced with numerous
challenges and open issues that require proper consideration
and creativity. To begin with, natural language is ambiguous
and variable, which is a major challenge to the proper
interpretation and analysis of textual artefacts, including
requirements documents, user stories, and software
specifications. More so, software engineering is domain-
specific, which presents even more complexities, and NLP
models need to be customizable and specialized to
accommodate various linguistic patterns and terms [25].
Moreover, the interpretability and trustworthiness of NLP
models in the context of software testing raise profound
concerns regarding reliability, robustness, and ethical
considerations [26]. It provides the current state of a certain
subject by using rigorous and analysis in Figure 3.

Fig. 3. Fundamentals of NLP

Also, the scalability and generalizability of NLP-based
testing frameworks remain elusive goals, with existing
approaches often struggling to cope with the complexities of
large-scale software systems and diverse testing scenarios.

C. Large Language Models in Programming

Large Language Models (LLMs) have shown notable
performance in generating source code, acting as development
bots (DevBots) to enable human-bot collaboration in software
projects. These models perform effectively in practical
downstream tasks such as generating code from natural
language descriptions [27]. These advancements in LLM for
complex code generation have facilitated developers with
increased automation and enhanced the role of such models in

software development. This model completes the full software
development process in less than seven minutes at a cost of
under one dollar. It introduced Codegrees, a multilingual
model with 13 billion parameters, specifically designed for
code generation across 23 programming languages [28].
Metate, a metaprogramming framework that integrates
efficient human workflows into LLM-based multi-agent
collaborations.

IV. CONTINUOUS INTEGRATION AND DEPLOYMENT FOR

SOFTWARE QUALITY ASSURANCE

Continuous Integration (CI) is a software development
practice where developers frequently integrate their code
changes into a shared repository, typically multiple times a
day. Each integration triggers an automated build and testing
process, allowing teams to detect and address issues early in
the development cycle. CI emphasizes collaboration,
encouraging developers to work together to produce a stable
codebase [29]. Continuous Deployment (CD) extends the
principles of CI by automating the release of code changes to
production environments after passing predefined testing
criteria. In a CD pipeline, successful builds are automatically
deployed, enabling teams to deliver new features and fixes to
users rapidly and consistently. CI and CD create a seamless
workflow that enhances software delivery, ensuring that
updates can be made quickly and safely with minimal manual
intervention.

A. Benefits of CI/CD

Implementing CI/CD practices offers numerous benefits
that contribute to more efficient and effective software
development:

1) Faster Release Cycles
One of the most significant advantages of CI/CD is the

acceleration of release cycles. By automating the integration
and deployment processes, teams can deliver new features,
enhancements, and bug fixes more frequently. This agility
allows organizations to respond rapidly to market demands
and user feedback, ensuring that their software remains
competitive and relevant.

2) Improved Code Quality
CI/CD lead to enhanced code quality through rigorous

automated testing and continuous feedback. By integrating
testing into the development pipeline, teams can identify and
resolve defects early in the process, reducing the likelihood of
issues in production. The emphasis on frequent integration
also encourages developers to adhere to coding standards and
best practices, further contributing to the overall quality of the
codebase.

3) Enhanced Collaboration Among Teams
CI/CD fosters a collaborative environment among

developers, testers, and operations teams. By promoting
shared responsibilities and clear visibility into the
development process, CI/CD reduces silos and encourages
open communication. Teams are more likely to work together
to solve problems, share knowledge, and support one another,
ultimately leading to a more cohesive and productive
development culture.

B. Intelligent Build and Deployment Pipelines

A Deployment pipeline is the process of taking code from
version control and making it readily available to users of your
application in an automated fashion [30]. When a team of
developers are working on projects or features, they need a

Dr. P Laxkar, Journal of Global Research in Electronics and Communication, 1 (12) December, 2025, 55-61

© JGREC 2025, All Rights Reserved 59

reliable and efficient way to build, test and deploy their work.
Historically, this would have been a manual process involving
lots of communication and a lot of human error.

The stages of a typical deployment pipeline are as follows
in Figure 4.

Fig. 4. Deployment pipeline

One of the primary benefits of AI in CI/CD is its ability to
detect errors early in the development cycle. Traditional
CI/CD tools rely on rule-based systems that may not catch
subtle or complex bugs. AI enhances error detection through:

1) Predictive Analytics
AI models analyze historical data to predict potential

failures before they occur [31]. By identifying patterns in past
deployments, predictive analytics help developers pre-
emptively address issues.

2) Anomaly Detection
Machine learning algorithms monitor logs, metrics, and

test results to detect anomalies. These algorithms flag
deviations from normal behavior, enabling rapid debugging
and resolution.

3) Automated Code Review
AI-driven tools review code submissions for syntax errors,

security vulnerabilities, and inefficiencies. This reduces
manual review time and improves code quality before
deployment.

C. AI-Based Performance Monitoring

Real-time performance monitoring for artificial
intelligence components in interactive applications has
emerged as a critical discipline in modern computing. As
users engage with intelligent systems through voice assistants,
adaptive interfaces, predictive analytics dashboards, and
autonomous decision agents, the need to understand how these
systems perform under dynamic conditions intensifies.
Traditional software monitoring focuses on static metrics such
as uptime, throughput, and error rates [32]. Real-time AI
performance monitoring seeks to capture these multi-faceted
performance indicators as systems operate, enabling
developers, operators, and stakeholders to make informed
decisions that improve responsiveness and trustworthiness.

V. LITERATURE REVIEW

The literature review that Artificial Intelligence has a
software engineering AI-powered techniques coding, testing,
automation, and system optimization processes efficient
improving productivity, quality, and reliability in Table II of
focus area, key finding, challenges and future work are
discussed below:

Kosna (2025) the integration of Artificial Intelligence (AI)
into software development has triggered a paradigm shift,
fundamentally reshaping the landscape of software
engineering the transformative impact of AI across the entire
Software Development Lifecycle (SDLC), from requirements
engineering to deployment and maintenance. We explore the
role of Generative AI (GenAI) in code generation and
automation, the advancements in AI-driven software testing
and quality assurance, and the evolution of DevOps through
intelligent CI/CD pipelines [33].

Peterson, Benjamin and Johnson (2025) artificial
Intelligence (AI) has emerged as a transformative force in
software engineering, reshaping the development lifecycle
from initial code generation to deployment. The evolution and
integration of AI-powered automation within software
engineering processes, innovations in natural language-based
coding, intelligent testing, continuous integration, and
deployment strategies scholarly and industry sources [34].

Chen et al. (2024) the rapid advancements in Generative
AI (GenAI) tools, such and GitHub Copilot, are transforming
software engineering by automating code generation tasks.
While these tools improve developer productivity, for
organizations and hiring professionals in evaluating software
engineering candidates' true abilities and potential these tools
in both industry and academia, tools specifically affect the
hiring process [35].

Sajid and Maya (2023)AI-powered software engineering
is transforming the way software development processes are
managed, particularly in the area of code generation.
Traditionally, software engineering has been a highly manual
and time-consuming process, with developers needing to write
large amounts of code, troubleshoot bugs, and handle complex
requirements. Multi-agent systems (MAS) leverage multiple
AI agents working collaboratively to perform tasks typically
require human intervention software engineering, these agents
can automate code generation, testing, debugging, and even
management [36].

Pham, Nguyen and Nguyen (2022) state that software
testing is a process of evaluating and verifying whether a
software product still works as expected, and it is repetitive,
laborious, and time-consuming automation tools have been
developed to automate testing activities and enhance quality
and delivery time. Recent advances in artificial intelligence
and machine learning (AI/ML) the potential for addressing
important in test automation applied to automate various
testing activities, such as detecting bugs and errors,
maintaining test cases, or generating new test cases much
faster than humans [37].

Mulla and Jayakumar (2021) artificial intelligence (AI)
and machine learning (ML) techniques in the field of software
testing. The use of AI in software testing is still in its initial
stages. Also, the automation level is lower compared to more
evolved areas of work. AI and ML can be used to help reduce
tediousness and automate tasks in software testing the
potential of between human and machine-driven testing
capabilities to fully utilize AI and ML techniques in testing,
enhance the entire testing process and skills of testers and will
contribute to business growth [38]

Dr. P Laxkar, Journal of Global Research in Electronics and Communication, 1 (12) December, 2025, 55-61

© JGREC 2025, All Rights Reserved 60

TABLE II. COMPARATIVE ANALYSIS OF AI POWERED TOOL IN SOFTWARE ENGINEERING IN CODE GENERATION

Author Focus Area Key Findings Approach Challenges Future Work

Kosna (2025) AI integration
across SDLC

AI has caused a paradigm shift in
software engineering by

transforming all SDLC phases,

including requirements,
development, testing, deployment,

and maintenance.

Conceptual and
analytical review of

AI applications

across SDLC with
emphasis on GenAI

and DevOps

Integration
complexity,

reliability of AI-

generated artifacts,
and governance of

AI-driven pipelines

Deeper empirical
validation of AI-driven

SDLC tools and

development of
standardized AI

governance frameworks

Peterson,
Benjamin &

Johnson (2025)

AI-powered
automation in

software

engineering

AI reshapes the development
lifecycle through intelligent code

generation, testing, CI/CD, and

deployment strategies, increasing
efficiency and adaptability.

Systematic review
of scholarly and

industry literature

Trust in AI-
generated code,

explainability, and

alignment with
existing workflows

human AI collaboration
models and explainable

AI in software

engineering

Chen et al.

(2024)

Generative AI

tools in code

generation

Tools like ChatGPT and GitHub

Copilot significantly improve

productivity but raise concerns in
evaluating developers’ real skills,

especially.

Empirical analysis

and industry-

academia
comparison

Skill assessment

challenges, over-

reliance on AI tools,
academic integrity

issues

Development of new

evaluation frameworks

for hiring and education
in the presence of GenAI

Sajid & Maya
(2023)

Multi-Agent
Systems (MAS)

for AI-powered

software
engineering

MAS enable collaborative AI agents
to automate code generation, testing,

debugging, and project

management, reducing manual
effort.

Architecture-based
analysis of MAS in

software

engineering

Coordination
overhead, system

complexity, and

scalability issues

Optimization of agent
coordination and real-

world deployment of

MAS-based frameworks

Pham, Nguyen

& Nguyen
(2022)

AI/ML in software

test automation

AI/ML significantly accelerate

testing by automating bug detection,
test case generation, and

maintenance, quality and delivery

speed.

AI/ML techniques

applied to software
testing

Data dependency,

test reliability, and
tool integration

issues

Advanced learning

models for adaptive and
self-maintaining test

systems

Mulla &
Jayakumar

(2021)

AI and ML in
software testing

AI/ML adoption in testing is still
immature but shows strong potential

to reduce manual effort

Exploratory of
AI/ML techniques

in testing

Low automation
maturity, lack of

skilled testers,

limited real-world
adoption

Skill development for
testers and research on

hybrid human–AI testing

frameworks

VI. CONCLUSION WITH FUTURE WORK

The transformative nature of Artificial Intelligence in current

software engineering, specifically, AI-assisted code

generation, quality assurance, and CI/CD practices. The

recent development in machine learning, deep learning,

natural language processing, and large language models has

transformed the concept of AI from an automation based on

rules into a partner in development. The productivity of the

developer, plus the quality of the code, and the detection of

the defect can be seen in tools like GitHub Copilot and

transformer-based models created by Open AI, which have

proven to have made significant improvements. The paper

has pointed out the role of intelligent build pipelines,

predictive analytics, anomaly detection, and real-time

performance monitoring to improve reliability and speed in

the delivery of software process of data quality dependency,

low levels of interpretability, trust, ethical issues, and

excessive dependence on automation. Development practices

that integrate, transparently, and in a governable manner.

Future studies must be directed towards justifiable and

credible AI frameworks for CI/CD pipelines, evaluation

benchmarks, and ethical governance constructs. Also, cross-

domain discovery, like the implementation of AI-based

optimization ideas to expansion loops of pressure piping

systems, provides encouraging possibilities of helping to

enhance structural stability and design safety.

REFERENCES

[1] J. Sanchez, A. Willie, and M. Niall, “AI-Powered Code

Optimization in Continuous Integration,” 2024.

[2] P. Gupta, S. Kashiramka, and S. Barman, “A Practical Guide for

Ethical AI Product Development,” in 2024 IEEE 11th Uttar

Pradesh Section International Conference on Electrical,
Electronics and Computer Engineering (UPCON), 2024, pp. 1–6.

doi: 10.1109/UPCON62832.2024.10983504.

[3] S. Kashiramka, P. Gupta, and S. Barman, “Literature Review of

Artificial Intelligence’s Impact on Politics and Society,” in 2024
IEEE 11th Uttar Pradesh Section International Conference on

Electrical, Electronics and Computer Engineering (UPCON),

2024, pp. 1–6. doi: 10.1109/UPCON62832.2024.10983037.

[4] K. S. Hebbar, “AI-Driven Code Review: A Real-Time Feedback

System for Secure and Maintainable Software Development,” J.

Inf. Syst. Eng. Manag., 2024.

[5] R. Wang, R. Cheng, D. Ford, and T. Zimmermann, “Investigating
and Designing for Trust in AI-powered Code Generation Tools,”

2023. doi: 10.48550/arXiv.2305.11248.

[6] P. R. Marapatla, “Intelligent APIs: AI-Powered Ecosystem for

Nonprofit Digital Transformation,” J. Inf. Syst. Eng. Manag., vol.

10, 2025.

[7] P. Chandrashekar, “A Survey of Tools, Techniques, and Best

Practices: CI/CD Integration in DevOps Workflows,” Int. J. Adv.
Res. Sci. Commun. Technol., vol. 3, no. 3, pp. 1366–1376, Jul.

2023, doi: 10.48175/IJARSCT-11978V.

[8] J. Erizo, “AI-Augmented Code Generation,” J. Sist. Inf. dan Tek.

Inform., vol. 3, pp. 19–24, 2025, doi: 10.70356/jafotik.v3i1.53.

[9] P. Chandrashekar, “Enhancing Software Application Efficiency

Through Design- Centric Methodologies : An Empirical

Evaluation,” vol. 2, no. 1, pp. 187–196, 2022, doi:

10.56472/25832646/JETA-V2I1P122.

[10] H. P. Kapadia, “AI Enhanced Web Accessibility Features,” vol. 8,

no. 4, pp. 476–483, 2021.

[11] W. Nasir and N. Kallinteris, “From Code Generation to AI
Collaboration: The Role of Multi-Agent Systems in Software

Engineering,” 2025. doi: 10.13140/RG.2.2.21102.32320.

[12] S. Roobini, M. Kavitha, H. Deenadayalan, and A. Muthusamy,
“AI-Powered Tools to Enhance the Stages of Software

Development,” 2025, pp. 435–478. doi: 10.4018/979-8-3693-

9356-7.ch017.

[13] S. K. Chintagunta, “Generative AI Approaches to Automated Unit
Test Case Generation in Large-Scale Software Projects,” ESP J.

Eng. Technol. Adv., vol. 4, no. 1, pp. 150–157, 2024, doi:

10.56472/25832646/JETA-V4I1P121.

[14] S. K. Chintagunta and S. Amrale, “AI in Code , Testing , and

Deployment : A Survey on Productivity Enhancement in Modern

Software Engineering,” Int. J. Res. Anal. Rev., vol. 10, no. 4, pp.

Dr. P Laxkar, Journal of Global Research in Electronics and Communication, 1 (12) December, 2025, 55-61

© JGREC 2025, All Rights Reserved 61

747–752, 2023, doi: 10.14741/ijcet/v.13.6.16.

[15] Y. Wang, “A Review of Research on AI-Assisted Code Generation

and AI-Driven Code Review,” Acad. J. Sci. Technol., vol. 18, pp.

236–241, 2025, doi: 10.54097/d6775287.

[16] T. Kaluarachchi, “From Mock-ups to Code: A Conceptual
Synthesis of AI-Driven Automatic Website Generation,” Int. J.

Innov. Sci. Res. Technol., pp. 305–317, Nov. 2025, doi:

10.38124/ijisrt/25nov339.

[17] V. Rajendran, D. Besiahgari, S. C. Patil, M. Chandrashekaraiah,

and V. Challagulla, “A Multi-Agent LLM Environment for

Software Design and Refactoring: A Conceptual Framework,” in
SoutheastCon 2025, IEEE, Mar. 2025, pp. 488–493. doi:

10.1109/SoutheastCon56624.2025.10971563.

[18] Y. Yin, J. Liu, Y. Liu, and J. Deng, “Advancing code completion

through rotary position embedding,” Cluster Comput., vol. 28,

2025, doi: 10.1007/s10586-024-05015-z.

[19] A. Ouni, M. Kessentini, and H. Sahraoui, “Multiobjective

Optimization for Software Refactoring and Evolution,” vol. 94,

2014, pp. 103–167. doi: 10.1016/B978-0-12-800161-5.00004-9.

[20] F. Chad, “Low-Code and No-Code Development Platforms,”

2025.

[21] M. Alenezi and M. Akour, “AI-Driven Innovations in Software
Engineering: A Review of Current Practices and Future

Directions,” Appl. Sci., vol. 15, no. 3, p. 1344, Jan. 2025, doi:

10.3390/app15031344.

[22] S. Martínez-Fernández et al., “Software Engineering for AI-Based
Systems: A Survey,” ACM Trans. Softw. Eng. Methodol., vol. 31,

pp. 1–59, 2022, doi: 10.1145/3487043.

[23] D. Patil, N. Rane, P. Desai, and J. Rane, “Machine learning and
deep learning: Methods, techniques, applications, challenges, and

future research opportunities,” 2024, pp. 28–81. doi:

10.70593/978-81-981367-4-9_2.

[24] M. Soori, B. Arezoo, and R. Dastres, “Artificial intelligence,

machine learning and deep learning in advanced robotics, a

review,” Cogn. Robot., vol. 3, pp. 54–70, 2023, doi:

10.1016/j.cogr.2023.04.001.

[25] M. Boukhlif, M. Hanine, N. Kharmoum, A. Noriega, D. Obeso,

and I. Ashraf, “Natural Language Processing-Based Software

Testing: A Systematic Literature Review,” IEEE Access, vol. PP,

p. 1, 2024, doi: 10.1109/ACCESS.2024.3407753.

[26] Z. Pauzi and A. Capiluppi, “Applications of natural language

processing in software traceability: A systematic mapping study,”
J. Syst. Softw., vol. 198, p. 111616, Apr. 2023, doi:

10.1016/j.jss.2023.111616.

[27] R. A. Husein, H. Aburajouh, and C. Catal, “Large language models
for code completion: A systematic literature review,” Comput.

Stand. Interfaces, vol. 92, p. 103917, Mar. 2025, doi:

10.1016/j.csi.2024.103917.

[28] Z. Rasheed et al., “Large Language Models for Code Generation:
The Practitioners Perspective,” 2025. doi:

10.48550/arXiv.2501.16998.

[29] H. Agoro and O. James, “AI-Enhanced Continuous Integration and

Deployment (CI/CD),” 2022.

[30] D. Merron, “Deployment Pipelines (CI/CD) in Software

Engineering,” https://www.bmc.com, 2020.

[31] S. Chukwueze, A. Akano, D. David, and A. Samuel, “AI-Driven
Evolution of CI/CD Pipelines: Intelligent Error Detection and

Performance Optimization,” 2025.

[32] J. Mitchell, R. Carter, M. Hughes, O. Reynolds, and D. Esther,

“Real-Time AI Performance Monitoring in Interactive

Applications,” 2025.

[33] S. R. Kosna, “AI-Driven Software Development: A Paradigm Shift

in Engineering Practices,” 2025.

[34] E. Peterson, M. Benjamin, and E. Johnson, “AI-Powered
Automation in Software Engineering: From Code Generation to

Deployment,” 2025.

[35] A. Chen, T. Huo, Y. Nam, D. Port, and A. Peruma, “The Impact
of Generative AI-Powered Code Generation Tools on Software

Engineer Hiring: Recruiters’ Experiences, Perceptions, and

Strategies,” 2024. doi: 10.48550/arXiv.2409.00875.

[36] B. Sajid and K. Maya, “AI-Powered Software Engineering:

Automating Code Generation with Multi-Agent Systems,” 2023.

doi: 10.13140/RG.2.2.15754.58560.

[37] P. Pham, V. Nguyen, and T. Nguyen, “A review of ai-augmented
end-to-end test automation tools,” in Proceedings of the 37th

IEEE/ACM International Conference on Automated Software

Engineering, 2022, pp. 1–4.

[38] N. Mulla and N. Jayakumar, “Role of Machine Learning \&

Artificial Intelligence Techniques in Software Testing,” Turkish J.

Comput. Math. Educ., vol. 12, no. 6, pp. 2913–2921, 2021..

