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Abstract—Data center energy optimization has come to be a
very pressing research problem due to the active evolution of the
digital infrastructure and the increasing environmental issues.
The existing data centers are highly computing consuming
cooling and power distribution thus high operational costs and
carbon emission. The given paper examines the most critical
energy consumption characteristics of data centers and
discusses more advanced approaches to the Al to improve the
energy-efficiency. It discusses Al-based models, such as deep
learning, reinforcement learning, and hybrid optimization
methods, in the predictive workloads, cooling strategies
optimization and better power management. The hybridization
of Al with the energy management system, edge-cloud
architecture and smart monitoring systems is also discussed. It
puts emphasis to performance measures such as the PUE, CUE
and system reliability. Based on the findings, Al-based
optimization of the next-generation data centers can be made
much more energy efficient, robust, and sustainable.

Keywords—Artificial Intelligence (Al), Data Centers, Energy
Optimization, Machine Learning, Reinforcement Learning.

I. INTRODUCTION

Energy consumption is an urgent operational and
environmental issue that modern data centers encounter as
they run to accommodate the surging digital workloads of
cloud computing (CC), big data analytics, and Al [1][2]. The
high demands in computing resources, cooling facilities, and
power supply system’s demand high electricity in data
centers. Intense power usage directly influences the cost of
operation, stability of the system, and the emission of carbon;
hence, data center operators have given attention to energy
efficiency. The traditional energy management solutions are
generally rigid and imprecise in addressing the dynamic, large
scale, and complex nature of data center environments
through the use of fixed control policies and heuristic
optimization.

Artificial Intelligence (AI) is a powerful resource in
respect to the efficient utilization of energy in the data centers,
with the use of data-driven, adaptive, and forecasting
decision-making [3][4]. Through machine learning, deep
learning, and predictive analytics, Al techniques can include
the nonlinear dynamics of the system, predict loads, optimize
cooling and distribute power in a dynamically scheduling of
computational resources [5]. These features enable data
centers to minimize the amount of waste generated by energy,
enhance energy proportionality, and be able to support
performance and reliability at different workloads.
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The coordination of IoT technologies also contributes to
the optimization of Al in data centers regarding energy usage
[6][7]. The IoT sensor nodes that are implemented on
computing servers, cooling units and power distribution
networks turn into sources of data in huge amounts and, in
fact, heterogeneous data that are high-frequency and highly
correlated [8]. This information is usually unstructured,
sporadic, and evolving, and therefore requires effective
processing at the edge and in cloud data centers [9][10].The
Al-powered data fusion and edge-cloud analytics enable
better system monitoring, real-time control, and intelligent
energy management of data center infrastructure.

The review paper is dedicated to the analysis and the
review of Al-driven methods of data center energy
optimization, in which the particular attention is paid to the
intelligent monitoring and predictive modeling techniques, as
well as adaptive control strategy.

A. Structured of The Paper

The paper structured as follows: In Section II, the paper
presents the energy consumption characteristics of data
centers and identifies the major operational issues. Section I1I
provides a detailed overview of artificial intelligence (Al)
solutions for energy optimization. Section IV discusses the
collaboration between Al and energy management systems to
effectively monitor and control them. Section V provides a
critical review of the available literature summarizing major
findings and comparative insights. Lastly, Section VI
summarizes the paper by presenting the key findings of the
research and outlining possible avenues for future research.

II. ENERGY CONSUMPTION CHARACTERISTICS OF DATA
CENTERS

The electrical grid is the usual source of power for data
centers. Nonetheless, there are data centers that employ
alternative power sources such as diesel, solar, wind, and
hydrogen (fuel cells) [11]. In order to determine how much
power each piece of IT hardware, infrastructure facility, and
support system receives from outside sources, the total facility
power is divided by the switchgear.

A. Power Distribution and Energy Flow in Data Centers

Data centers often use either static or dynamic
uninterruptible power sources (UPSs) as part of their
complicated multi-state power system (PSS). Reliability
evaluation and the calculation method are both made more
difficult by the complicated and idiosyncrasies of such a PSS's
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operation, even though PSS reliability may be assessed at both
the design and reconstruction stages [12][13]. Typically,
while deciding on the most sensible setup for the data center's
PSS, the outcomes of a reliability calculation are useful.

Data centers are categorized by the Uptime Institute into
four "Tier" levels of infrastructure, with the PSS configuration
being one of the key factors. Providing a framework for
creating a data center that achieves the targeted availability
level is the primary goal of the tier classification [14]. Data
centers are categorized according to their maintenance support
capabilities and their capacity to endure a PSS failure. System
availability determines the number of redundant components
and parallel power supply lines in the PSS, which determines
the reliability tier from I (the least reliable) to IV (the most
reliable).

The carbon footprint of data centers is on the rise because
of the substantial energy consumed to power their IT and
cooling systems. In contrast, low emissions are another
important factor in a data center's efficiency. The lower the
greenhouse gas emissions, the more efficient a datacenter
should be, not only working within a certain temperature
range but also generating less carbon dioxide [15]. In this type
of data center, all IT equipment, building systems, and
everything else are planned to meet the requirements of being
“green”. Consuming renewable energy sources is the main
principle of green data centers.

B. IT Load, Cooling Systems, and Infrastructure Energy
Usage

The cooling system's cold air is distributed through a
plenum beneath the floor and perforated airflow panels in a
typical data center that follows a hot aisle/cold aisle
layout[16]. The chill air enters the narrow gaps between the
servers from one side and exits the other, moving horizontally.
The primary drawbacks are higher flow pressure dips and a
combination of warm and cold air on the top side of the racks.
Different cooling loads between racks are a consequence of
the varied and unequal IT demands that most data centers
operate under. When all server racks are supplied with cool air
equally, hot spots cannot be avoided [17]. An on-demand
distribution system for cold air across local cooling loads is
necessary to avoid local overcooling while satisfying the
cooling demands of individual computer racks. Uneven server
use is seen in Figure 1 of a data center. Distributed airflow
management is based on the idea of dividing a data center into
sections and then controlling the airflow to each section
according to its cooling needs.
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Fig. 1. A data center with uneven server utilization

C. Energy Efficiency Metrics

Data centers' energy efficiency is evaluated using the three
main metrics: PUE, CUE, and WUE. The Green Grid
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pioneered the calculation of PUE, or power utilization
efficiency, as a ratio of overall facility energy usage to that of
IT equipment. PUE is a widely used metric for assessing data
centers' energy efficiency; it was created by the Green Grid.

PUE is given an environmental context by CUE, which
also monitors the carbon emissions linked to data center
energy use [18]. Big data and cloud computing are two
examples of the rapidly developing technologies that have
resulted in an exponential rise in data communication and
computation, increasing data center energy usage. The
formula is the sum of all CO: emissions divided by the energy
consumption of all IT equipment.

PUE is still the most popular and significant of these
metrics in academia and business. Worldwide, a lot of work is
being done to green the information and communication
technology (ICT) industry. PUE variation is mainly caused by
cooling systems, particularly in establishments that operate in
warm or humid conditions.

Inefficient airflow design, static cooling setpoints, and
outdated compressor or fan technologies often lead to
overcooling or thermal imbalances, significantly inflating a
data center’s PUE [19]. This inefficiency impacts energy bills
and results in unnecessary carbon emissions and hardware
degradation over time. Therefore, boosting all three efficiency
measures simultaneously depends on optimizing cooling
operations.

III. AI TECHNIQUES FOR ENERGY OPTIMIZATION IN DATA
CENTERS

Renewable energy systems are now more efficient than
ever before because to artificial intelligence's revolutionary
impact on predictive maintenance and energy optimization
(see Figure 2). Power grid stability and energy management
have become increasingly challenging due to the proliferation
of renewable power sources, responsive loads, two-way
power flow, and distributed energy resources (DERs)

[20][21].

Fig. 2. Techniques of Artificial Intelligence

Instead, using Al and hybrid optimization techniques, as
observed in Table I, it is now easy to develop responsive,
leading and distributed methods for controlling energy
systems [22][23]. Al-powered energy systems help predict
energy usage, allocate resources, run and maintain batteries,
connect microgrids, and regulate the dynamics of energy
networks at all levels.
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TABLE I. AI TECHNIQUES AND THEIR APPLICATIONS IN PREDICTIVE
MAINTENANCE OF RENEWABLE ENERGY SYSTEMS

Al Technique Description Application in
Energy Systems
Deep Learning Learns complex | Early fault prediction
patterns from large- | and performance
scale, high- | optimization
dimensional data
Convolutional Extract spatial features | Blade damage
Neural Networks | from images and | detection, component
(CNNs) sensor data health monitoring

Recurrent Neural
Networks (RNNs)

Model temporal
dependencies in time-
series data

Condition monitoring
and trend forecasting

Long Short-Term

Gather sequential data

Failure prediction and

future events

Memory (LSTM) with long-term | load/performance
dependencies forecasting

Multi-Layer Learn nonlinear | Fault classification and

Perceptrons relationships  among | efficiency prediction

(MLPs) system variables

Predictive Uses statistical and ML | Maintenance

Analytics methods to forecast | scheduling and failure

prevention

A. ML and DL-Based Energy Modeling and Prediction

The energy domain encompasses both a ML model for
performance prediction and a building element energy
retrofitting scenario. In addition, four other schematic
predictive methodologies have been used to create energy
forecasts. One of these methods, an ML method based on
LSTM, promises to have quicker computing time than the
Energy Plus simulation [24]. Alternatively, replaced a
building energy modeling tool with an ML model that
properly predicts thermal energy using a convolutional neural
network (CNN) as an input, regardless of the building's design
or the weather.

ML is one of the most reliable methods for evaluating
building energy use, among other things, and for planning and
forecasting the imminent rise in smart building energy
efficiency [25]. Consequently, in order to enhance the
effectiveness and efficiency of energy saving programs
undertaken by building management teams, smart models are
essential for smart building best practices [26]. Some of the
ML methods used by building energy prediction models are
DTs, k-NNs, support vector machines (SVMs), and others. A
straightforward method for making predictions, the k-NN
algorithm uses categorization. kNN is a simple, non-
parametric learning technique for estimating building energy
usage by classifying incoming data using an existing database.

B. Reinforcement Learning for Adaptive Energy
Management

The capacity of deep neural networks to make adaptive
decisions is combined with their capacity for generalization in
Reinforcement Learning (RL). FElectric car charging
coordination, microgrid control, and renewable integration are
some of the areas that have seen the implementation of
algorithms like DDPG, SAC, and PPO [27]. While these
studies demonstrate the promise of DRL in energy
management, most focus on small-scale or simplified
environments, often neglecting:

e Scalability to multi-node smart grids with complex
topology.

e Robustness
observability.

e Operational constraints such as reserve margins,
ramping limits, and regulatory compliance.

under high uncertainty and partial
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RL is a branch of ML that provides a promising solution
in this area since it allows machines to acquire optimal energy
management strategies through the collaboration with the
environment [28]. Contrary to the traditional optimization
methods, RL uses the trial-and-error learning to dynamically
adjust its policies. This real time learning and adaptation
capability renders RL especially applicable in the
management of the complexity of energy utilization in
machines.

C. Hybrid Al Optimization for Energy-Efficient Data
Center Operations

Solar energy system design and performance is optimized
by Al-based optimization algorithms that include the ABC,
PSO, and PIO. Among the specific advantages of these
algorithms are strong abilities to search the globe, flexibility,
and effective exploitation of high-fitness regions, which
makes them highly relevant when it comes to the
minimization of solar panel orientation, optimization of
energy storage, fault detection, and optimization of large-scale
solar arrays [29][30]. With the combination of these
sophisticated algorithms, the solar energy systems able to
become intelligent and adaptive networks that are constantly
optimizing as the environment varies. The benefits of Hybrid
Al-Optimization include:

e Improved Predictive Accuracy: It deals with the use
of statistical procedures to enhance predictive validity.
Hybrid Al-optimization risk models are more
predictive and accurate since they integrate nonlinear
predictive performance of the Al with the use of
optimization algorithms to optimize the model
behavior.

e Stability and Robustness: The complexity of Al
models is controlled by regulating overfitting by
imposing constraints on its parameters, complexity
penalties, or, more importantly, by using domain-
specific risk levels [31]. This is a tradeoff that is of
special concern when false positives are of interest to
be minimized and false negatives are to be avoided,
e.g., credit risk rating, fraud detection and insurance
underwriting.

e Interpretability and Governance: Hybrid models
can be interpretable and controllable because they
include explainable artificial intelligence features,
such as feature importance analysis and SHAP-based
explanations, and sensitivity analysis and scenario
analysis through optimization. These functions
provide clear and regulator-friendly reporting and are
useful in aligning risk models in organisations with
regulatory risk frameworks, including Basel III, IFRS
17 and Solvency II.

e Improved Uncertainty Quantification: Hybrid Al-
optimization models also yield more precise risk
measurements because of the inclusion of uncertainty
estimation  techniques  (Bayesian = modeling,
bootstrapping and robust optimization). They give
confidence limits, streamline systematic stress tests
and set risk-adjusted decision boundaries, which
enable decision-makers to make decisions under
uncertainty with greater confidence.

IV. AI-INTEGRATED ENERGY MANAGEMENT SYSTEMS

A computer program called Al can be used in an energy
management system to quickly and accurately process and
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evaluate data. It can also be used to predict how much energy
used in the future, find strange patterns, and sort individual
user load curves into groups [1]. There is a lack of practical
experience in evaluating energy management systems
powered by Al at this time [32]. Companies, particularly
SMEs, are hesitant to use such systems for a number of
reasons. These include insufficient knowledge of Al, concerns
about the expense, and a lack of necessary resources and
datasets.

A. Cloud-Based and Edge AI Solution

The number of IoT devices is growing very quickly, which
means there is a huge amount of raw data that needs to be
handled right now. Traditional cloud-native businesses are
struggling to keep up with this boom due to rising latency,
network congestion, and security issues. Decisions need to be
made in real time in services like remote patient monitoring
and self-driving automobiles, when delay might be fatal
[33][34]. As a result of these changes, Edge-Al has been
slowly replacing traditional Al. It enables processing with low
latency close to the data source, at the network's edge. Figure
3 represents a comparison between Al CC and edge
computing. Consequently, Edge-Al improves system
responsiveness and saves bandwidth use by cutting down on
the quantity of raw data that needs to be transferred to the
cloud [35].

Al cloud Edge computing

1

Fig. 3. Comparison b/w Al cloud and Edge computing

Advantages of Edge-Al: Edge nodes lack the processing
capability of centralized cloud architecture, despite all its
benefits. Complex Al models may demand more processing
power than what edge devices can provide on their own. When
it comes to supporting edge intelligence, cloud computing is
the way to go [36]. Train Al models on the cloud, which
provides a scalable platform for deploying deep learning and
ML algorithms.

The benefits of both the cloud and the edge may be
harnessed in a hybrid AI system through smart task
distribution. Although compute-intensive operations like
model retraining and large data analytics take place in the
cloud, edge computing handles real-time inference and low-
latency jobs. To address the limitations of existing Edge-Al
solutions, it integrates the lightning-fast processing power of
the edge with the cloud-based precision that is required[37].

B. Monitoring-AI and Control Architectures

Monitoring is made up of a number of tasks that are
needed to prepare the data. Data collection is the primary
concern of smart buildings, which encompasses a wide range
of technologies such as smart sensors and smart meters set up
at different levels (appliances, dwellings, buildings, etc.) or
the combination of sensors to determine resident habits. The
IoE is a distributed smart energy infrastructure that has
recently arisen as a result of advancements in both device
consumption and networked dispersed elements. It relies on
the exchange of data between devices online [38]. Displayed
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in Figure 4 are the artificial intelligence methods employed for
monitoring tasks in the investigated papers.

Summary of Al techniques in monitoring tasks

ANN = K-means
Regression . 2 K-noarest
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Fig. 4. Summary of Al techniques in monitoring tasks

In the process of gathering data, suggest a Smart EMS
design with three parts. The data collection module is the
initial part of the system and is responsible for sensing various
kinds of data (including weather conditions), receiving status
signals from units that produce or consume energy, and
processing them. To prepare the data, the data fuser module
finds outliers and missing data, and then uses a K-means
clustering approach to find the centroids of each class to
replace them. At last, it eliminates correlated characteristics
by combining many variables to calculate new attributes based
on their correlations.

V. LITERATURE REVIEW

Based on this literature review has shown that ML and DL
models have a high value in enhancing load forecasting,
predictive maintenance, and energy optimization in industrial
and building energy systems. Complex architectures like
LSTMs, CNNs, and composite models are superior to
traditional ones and are more efficient in scheduling, grid
stability, and operational stability.

Gaddala and Kollati (2025) The trends in Al, which are
defining sustainable data centers, are geared towards
optimization, predictive analytics, machine learning
applications, and their implication on operational efficiency
and environmental effects. Artificial intelligence (AI) has
grown fast and has brought about a considerable effect on the
operations of the data centers hence the need to adopt
sustainable practices. The industry is being transformed by
new trends like Al powered energy optimization, integration
of solar energy and new cooling technologies. These
inventions are to conserve energy as well as minimizing
carbon footprints, and improving operation efficiency. With
the help of AI, data centers are able to anticipate the
maintenance requirements and optimize energy consumption
as well as responsiveness to the real-time needs [39].

Baraskar (2025) The essential but unseen components of
contemporary artificial intelligence are the hundreds of
processors, graphics processing units (GPUs), and
accelerators that are integrated into every single gadget on
Earth. This includes cars, refrigerators, printers, phones, social
networks, and more. Many people and the economy have to
pay a heavy price for this computer revolution. Information
technology data centers that house artificial intelligence are
among the most power-hungry parts of the network. Data
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handling and storage, as well as dissipating the enormous
amounts of heat produced, need twenty-four-hour electricity.
Carbon emissions increase with each use, putting a burden on
power grids throughout the world and adding to climate
change. Wherever else power generation is still dependent on
fossil fuels, the environmental toll is disproportionately high
[40].

Khurram and Hussain (2024) conversation about how the
coming together of quantum algorithms, renewable energy
integration into data centers, and art Al revolutionize energy
use management and cybersecurity. By utilizing quantum
algorithms, data centers may maximize the usage of
renewable energy sources such as solar and wind while
minimizing the use of traditional, non-renewable sources.
Quantum algorithms make prediction more precise, optimize
energies more efficiently in real-time and balance loads,
which make data centers more energy efficient and resistant
[41].

Goble (2023) the application of AI to enhance
sustainability in cloud data centers, in particular, to optimize
energy, balance workloads, and use smart cooling systems.
The adoption of Al in cloud computing infrastructure is a
chance of attaining long-term sustainability and carbon
neutrality. The purpose of Al in sustainable cloud computing
is critical in exploiting energy issues around the world and
creating a digital ecosystem based on intelligence and green

cooling options. The automation made by Al gives cloud
providers the ability to predict and deal with the energy
inefficiencies and minimize waste and increase the overall
system reliability [42].

Kumar, Khatri and Divan (2022) The need for data center
hosting is on the rise due to the growing computation and
storage demands of cloud services platforms and information
technology (IT). This, in turn, leads to a growth in the demand
for energy, which is needed to power the IT devices and cool
the data center. The increasing demands placed on data center
facilities have made it more difficult to optimize power usage
without compromising data center energy quality [43].

Suryadevara (2021) Energy-proportional computing
focuses on the efforts to reach the most efficient energy usage
in data centers, where the workload is directly related to the
energy consumption. It discusses the concepts and practical
applications of energy-proportional data center computing.
Design principles such as energy-conscious scheduling,
adaptive resource allocation, and dynamic power management
are studied [44].

Table II is a summary of Al-based sustainable data center
energy management, including optimization strategies,
efficiency benefits, environmental concerns, and future trends
of more green, intelligent infrastructure.

TABLEII. AI-BASED TECHNIQUES FOR SUSTAINABLE DATA CENTER ENERGY MANAGEMENT
Authors (year) Focus Area Key Findings Approaches Objectives Future Work
Gaddala & | Al-driven Al  significantly  enhances | Machine learning—based | Improve energy | Integration of advanced
Kollati (2025) sustainable operational efficiency and | energy optimization, | efficiency, reduce | Al models with large-
data center | reduces environmental impact | predictive maintenance, | carbon footprint, and | scale renewable energy
operations through intelligent optimization | real-time workload | enhance the | systems and autonomous
and predictive analytics adaptation sustainability of data | decision-making
centers frameworks
Baraskar (2025) | Environmental | Data centers that house artificial | Large-scale Highlight the | Development of greener
and economic | intelligence need a lot of | CPU/GPU/accelerator- sustainability Al hardware, energy-
impact of Al | electricity, which puts a strain | based computing | challenges and energy | aware Al workloads, and
data centers on the grid and causes carbon | infrastructure analysis consumption risks of | policy-driven
emissions to rise, particularly in Al-driven sustainability
areas that rely on fossil fuels. infrastructures frameworks
Khurram & | Al, quantum | Quantum  algorithms can | Quantum algorithms for | Improve sustainability, | Practical deployment of
Hussain (2024) | computing, significantly improve | energy optimization, load | resilience, and energy | quantum-Al hybrid
and renewable | renewable energy utilization, | balancing, and renewable | efficiency while | systems and scalability
energy forecasting  accuracy, and | energy forecasting decreasing use of fossil | evaluation in real-world
integration cybersecurity in data centers fuels. data centers
Goble (2023) Al-enabled Al improves workload | Deep learning, | Achieve long-term | Quantum computing and
sustainability balancing, intelligent cooling, | automation,  real-time | sustainability and | Al integration and cloud
in cloud data | and energy  optimization, | analytics, intelligent | carbon neutrality in | orchestration with
centers supporting carbon-neutral cloud | cooling mechanisms cloud computing renewable energy in
operations mind
Kumar, Khatri | Power Machine learning-based | ML-based power | Optimize power usage | Adaptive and real-time
& Divan (2022) | efficiency techniques effectively improve | optimization, energy | and ensure reliable | ML models for
optimization power usage effectiveness | quality monitoring, and | energy quality under | heterogeneous and large-
in data centers | (PUE) without compromising | intelligent control | increasing IT | scale data center
energy quality systems workloads environments
Suryadevara Energy- Energy consumption can be | Agile resource | Achieve optimal energy | Integration of energy-
(2021) proportional aligned proportionally with | allocation, virtualization, | efficiency and reduce | proportional techniques
computing in | workload through dynamic | consolidation, and | energy wastage with Al-driven predictive
data centers resource and power | energy-aware scheduling control and next-
management are all aspects of dynamic generation cooling
power management. technologies

VI. CONCLUSION AND FUTURE WORK

Energy optimization in data centers using Al techniques.
The exponential growth of computing workloads in today's
data centers is causing significant problems, such as excessive
energy usage, high operational expenses, and negative effects
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on the environment. Adaptive and predictive methods for
managing energy usage are offered by Al-based solutions, as
demonstrated in the review. These solutions include ML, DL,
RL, and hybrid Al-optimization algorithms. These techniques
facilitate predictions of loads with high accuracy, intelligent
control of the cooling process, dynamic resource scheduling,
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and enhancement of energy proportionality reducing the
amount of energy wasted as well as the performance and
reliability of the system. Additionally, the IoT and edge-cloud
Al systems will enhance real-time monitoring and data
interconnection and control to create scaled and responsive
energy management systems. Overall, the findings support the
belief that Al-driven energy management is a significant
instrument in improving the efficiency, sustainability, and
resilience of data center operations, which are one of the
enablers of green and smart data centers.

Further studies are required on mass real-life
implementation of Al-based energy management systems,
combination with renewable energy sources and carbon-
conscious scheduling and the exploitation of explainable and
trustworthy Al. Besides, studying quantum-Al hybrids and
framework benchmarking can also increase scalability and
adoption.
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