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Abstract—Data center energy optimization has come to be a 

very pressing research problem due to the active evolution of the 

digital infrastructure and the increasing environmental issues. 

The existing data centers are highly computing consuming 

cooling and power distribution thus high operational costs and 

carbon emission. The given paper examines the most critical 

energy consumption characteristics of data centers and 

discusses more advanced approaches to the AI to improve the 

energy-efficiency. It discusses AI-based models, such as deep 

learning, reinforcement learning, and hybrid optimization 

methods, in the predictive workloads, cooling strategies 

optimization and better power management. The hybridization 

of AI with the energy management system, edge-cloud 

architecture and smart monitoring systems is also discussed. It 

puts emphasis to performance measures such as the PUE, CUE 

and system reliability. Based on the findings, AI-based 

optimization of the next-generation data centers can be made 

much more energy efficient, robust, and sustainable.  

Keywords—Artificial Intelligence (AI), Data Centers, Energy 

Optimization, Machine Learning, Reinforcement Learning.  

I. INTRODUCTION 

Energy consumption is an urgent operational and 
environmental issue that modern data centers encounter as 
they run to accommodate the surging digital workloads of 
cloud computing (CC), big data analytics, and AI [1][2]. The 
high demands in computing resources, cooling facilities, and 
power supply system’s demand high electricity in data 
centers. Intense power usage directly influences the cost of 
operation, stability of the system, and the emission of carbon; 
hence, data center operators have given attention to energy 
efficiency. The traditional energy management solutions are 
generally rigid and imprecise in addressing the dynamic, large 
scale, and complex nature of data center environments 
through the use of fixed control policies and heuristic 
optimization. 

Artificial Intelligence (AI) is a powerful resource in 
respect to the efficient utilization of energy in the data centers, 
with the use of data-driven, adaptive, and forecasting 
decision-making [3][4]. Through machine learning, deep 
learning, and predictive analytics, AI techniques can include 
the nonlinear dynamics of the system, predict loads, optimize 
cooling and distribute power in a dynamically scheduling of 
computational resources [5]. These features enable data 
centers to minimize the amount of waste generated by energy, 
enhance energy proportionality, and be able to support 
performance and reliability at different workloads. 

The coordination of IoT technologies also contributes to 
the optimization of AI in data centers regarding energy usage 
[6][7]. The IoT sensor nodes that are implemented on 
computing servers, cooling units and power distribution 
networks turn into sources of data in huge amounts and, in 
fact, heterogeneous data that are high-frequency and highly 
correlated [8]. This information is usually unstructured, 
sporadic, and evolving, and therefore requires effective 
processing at the edge and in cloud data centers [9][10].The 
AI-powered data fusion and edge-cloud analytics enable 
better system monitoring, real-time control, and intelligent 
energy management of data center infrastructure. 

The review paper is dedicated to the analysis and the 
review of AI-driven methods of data center energy 
optimization, in which the particular attention is paid to the 
intelligent monitoring and predictive modeling techniques, as 
well as adaptive control strategy. 

A. Structured of The Paper 

The paper structured as follows: In Section II, the paper 
presents the energy consumption characteristics of data 
centers and identifies the major operational issues. Section III 
provides a detailed overview of artificial intelligence (AI) 
solutions for energy optimization. Section IV discusses the 
collaboration between AI and energy management systems to 
effectively monitor and control them. Section V provides a 
critical review of the available literature summarizing major 
findings and comparative insights. Lastly, Section VI 
summarizes the paper by presenting the key findings of the 
research and outlining possible avenues for future research. 

II. ENERGY CONSUMPTION CHARACTERISTICS OF DATA 

CENTERS  

The electrical grid is the usual source of power for data 
centers. Nonetheless, there are data centers that employ 
alternative power sources such as diesel, solar, wind, and 
hydrogen (fuel cells) [11]. In order to determine how much 
power each piece of IT hardware, infrastructure facility, and 
support system receives from outside sources, the total facility 
power is divided by the switchgear. 

A. Power Distribution and Energy Flow in Data Centers 

Data centers often use either static or dynamic 
uninterruptible power sources (UPSs) as part of their 
complicated multi-state power system (PSS). Reliability 
evaluation and the calculation method are both made more 
difficult by the complicated and idiosyncrasies of such a PSS's 
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operation, even though PSS reliability may be assessed at both 
the design and reconstruction stages [12][13]. Typically, 
while deciding on the most sensible setup for the data center's 
PSS, the outcomes of a reliability calculation are useful. 

Data centers are categorized by the Uptime Institute into 
four "Tier" levels of infrastructure, with the PSS configuration 
being one of the key factors. Providing a framework for 
creating a data center that achieves the targeted availability 
level is the primary goal of the tier classification [14]. Data 
centers are categorized according to their maintenance support 
capabilities and their capacity to endure a PSS failure. System 
availability determines the number of redundant components 
and parallel power supply lines in the PSS, which determines 
the reliability tier from I (the least reliable) to IV (the most 
reliable). 

The carbon footprint of data centers is on the rise because 
of the substantial energy consumed to power their IT and 
cooling systems. In contrast, low emissions are another 
important factor in a data center's efficiency. The lower the 
greenhouse gas emissions, the more efficient a datacenter 
should be, not only working within a certain temperature 
range but also generating less carbon dioxide [15]. In this type 
of data center, all IT equipment, building systems, and 
everything else are planned to meet the requirements of being 
“green”. Consuming renewable energy sources is the main 
principle of green data centers. 

B. IT Load, Cooling Systems, and Infrastructure Energy 

Usage  

The cooling system's cold air is distributed through a 
plenum beneath the floor and perforated airflow panels in a 
typical data center that follows a hot aisle/cold aisle 
layout[16]. The chill air enters the narrow gaps between the 
servers from one side and exits the other, moving horizontally. 
The primary drawbacks are higher flow pressure dips and a 
combination of warm and cold air on the top side of the racks. 
Different cooling loads between racks are a consequence of 
the varied and unequal IT demands that most data centers 
operate under. When all server racks are supplied with cool air 
equally, hot spots cannot be avoided [17]. An on-demand 
distribution system for cold air across local cooling loads is 
necessary to avoid local overcooling while satisfying the 
cooling demands of individual computer racks. Uneven server 
use is seen in Figure 1 of a data center. Distributed airflow 
management is based on the idea of dividing a data center into 
sections and then controlling the airflow to each section 
according to its cooling needs. 

 

Fig. 1. A data center with uneven server utilization 

C. Energy Efficiency Metrics 

Data centers' energy efficiency is evaluated using the three 
main metrics: PUE, CUE, and WUE. The Green Grid 

pioneered the calculation of PUE, or power utilization 
efficiency, as a ratio of overall facility energy usage to that of 
IT equipment. PUE is a widely used metric for assessing data 
centers' energy efficiency; it was created by the Green Grid.  

PUE is given an environmental context by CUE, which 
also monitors the carbon emissions linked to data center 
energy use [18]. Big data and cloud computing are two 
examples of the rapidly developing technologies that have 
resulted in an exponential rise in data communication and 
computation, increasing data center energy usage. The 
formula is the sum of all CO₂ emissions divided by the energy 
consumption of all IT equipment.  

PUE is still the most popular and significant of these 
metrics in academia and business. Worldwide, a lot of work is 
being done to green the information and communication 
technology (ICT) industry. PUE variation is mainly caused by 
cooling systems, particularly in establishments that operate in 
warm or humid conditions.  

Inefficient airflow design, static cooling setpoints, and 
outdated compressor or fan technologies often lead to 
overcooling or thermal imbalances, significantly inflating a 
data center’s PUE [19]. This inefficiency impacts energy bills 
and results in unnecessary carbon emissions and hardware 
degradation over time. Therefore, boosting all three efficiency 
measures simultaneously depends on optimizing cooling 
operations.  

III. AI TECHNIQUES FOR ENERGY OPTIMIZATION IN DATA 

CENTERS 

Renewable energy systems are now more efficient than 
ever before because to artificial intelligence's revolutionary 
impact on predictive maintenance and energy optimization 
(see Figure 2). Power grid stability and energy management 
have become increasingly challenging due to the proliferation 
of renewable power sources, responsive loads, two-way 
power flow, and distributed energy resources (DERs) 
[20][21].  

 

Fig. 2. Techniques of Artificial Intelligence  

Instead, using AI and hybrid optimization techniques, as 
observed in Table I, it is now easy to develop responsive, 
leading and distributed methods for controlling energy 
systems [22][23]. AI-powered energy systems help predict 
energy usage, allocate resources, run and maintain batteries, 
connect microgrids, and regulate the dynamics of energy 
networks at all levels. 
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TABLE I.  AI TECHNIQUES AND THEIR APPLICATIONS IN PREDICTIVE 

MAINTENANCE OF RENEWABLE ENERGY SYSTEMS 

AI Technique Description Application in 

Energy Systems 

Deep Learning Learns complex 

patterns from large-

scale, high-
dimensional data 

Early fault prediction 

and performance 

optimization 

Convolutional 

Neural Networks 
(CNNs) 

Extract spatial features 

from images and 
sensor data 

Blade damage 

detection, component 
health monitoring 

Recurrent Neural 

Networks (RNNs) 

Model temporal 

dependencies in time-

series data 

Condition monitoring 

and trend forecasting 

Long Short-Term 

Memory (LSTM) 

Gather sequential data 

with long-term 

dependencies 

Failure prediction and 

load/performance 

forecasting 

Multi-Layer 
Perceptrons 

(MLPs) 

Learn nonlinear 
relationships among 

system variables 

Fault classification and 
efficiency prediction 

Predictive 

Analytics 

Uses statistical and ML 

methods to forecast 

future events 

Maintenance 

scheduling and failure 

prevention 

A. ML and DL-Based Energy Modeling and Prediction 

The energy domain encompasses both a ML model for 
performance prediction and a building element energy 
retrofitting scenario. In addition, four other schematic 
predictive methodologies have been used to create energy 
forecasts. One of these methods, an ML method based on 
LSTM, promises to have quicker computing time than the 
Energy Plus simulation [24]. Alternatively, replaced a 
building energy modeling tool with an ML model that 
properly predicts thermal energy using a convolutional neural 
network (CNN) as an input, regardless of the building's design 
or the weather. 

ML is one of the most reliable methods for evaluating 
building energy use, among other things, and for planning and 
forecasting the imminent rise in smart building energy 
efficiency [25]. Consequently, in order to enhance the 
effectiveness and efficiency of energy saving programs 
undertaken by building management teams, smart models are 
essential for smart building best practices [26]. Some of the 
ML methods used by building energy prediction models are 
DTs, k-NNs, support vector machines (SVMs), and others. A 
straightforward method for making predictions, the k-NN 
algorithm uses categorization.  kNN is a simple, non-
parametric learning technique for estimating building energy 
usage by classifying incoming data using an existing database. 

B. Reinforcement Learning for Adaptive Energy 

Management 

The capacity of deep neural networks to make adaptive 
decisions is combined with their capacity for generalization in 
Reinforcement Learning (RL). Electric car charging 
coordination, microgrid control, and renewable integration are 
some of the areas that have seen the implementation of 
algorithms like DDPG, SAC, and PPO [27]. While these 
studies demonstrate the promise of DRL in energy 
management, most focus on small-scale or simplified 
environments, often neglecting: 

• Scalability to multi-node smart grids with complex 
topology. 

• Robustness under high uncertainty and partial 
observability. 

• Operational constraints such as reserve margins, 
ramping limits, and regulatory compliance. 

RL is a branch of ML that provides a promising solution 
in this area since it allows machines to acquire optimal energy 
management strategies through the collaboration with the 
environment [28]. Contrary to the traditional optimization 
methods, RL uses the trial-and-error learning to dynamically 
adjust its policies. This real time learning and adaptation 
capability renders RL especially applicable in the 
management of the complexity of energy utilization in 
machines. 

C. Hybrid AI Optimization for Energy-Efficient Data 

Center Operations 

Solar energy system design and performance is optimized 
by AI-based optimization algorithms that include the ABC, 
PSO, and PIO. Among the specific advantages of these 
algorithms are strong abilities to search the globe, flexibility, 
and effective exploitation of high-fitness regions, which 
makes them highly relevant when it comes to the 
minimization of solar panel orientation, optimization of 
energy storage, fault detection, and optimization of large-scale 
solar arrays [29][30]. With the combination of these 
sophisticated algorithms, the solar energy systems able to 
become intelligent and adaptive networks that are constantly 
optimizing as the environment varies. The benefits of Hybrid 
AI-Optimization include:  

• Improved Predictive Accuracy: It deals with the use 
of statistical procedures to enhance predictive validity. 
Hybrid AI-optimization risk models are more 
predictive and accurate since they integrate nonlinear 
predictive performance of the AI with the use of 
optimization algorithms to optimize the model 
behavior.  

• Stability and Robustness: The complexity of AI 
models is controlled by regulating overfitting by 
imposing constraints on its parameters, complexity 
penalties, or, more importantly, by using domain-
specific risk levels [31]. This is a tradeoff that is of 
special concern when false positives are of interest to 
be minimized and false negatives are to be avoided, 
e.g., credit risk rating, fraud detection and insurance 
underwriting.  

• Interpretability and Governance: Hybrid models 
can be interpretable and controllable because they 
include explainable artificial intelligence features, 
such as feature importance analysis and SHAP-based 
explanations, and sensitivity analysis and scenario 
analysis through optimization. These functions 
provide clear and regulator-friendly reporting and are 
useful in aligning risk models in organisations with 
regulatory risk frameworks, including Basel III, IFRS 
17 and Solvency II.  

• Improved Uncertainty Quantification: Hybrid AI-
optimization models also yield more precise risk 
measurements because of the inclusion of uncertainty 
estimation techniques (Bayesian modeling, 
bootstrapping and robust optimization). They give 
confidence limits, streamline systematic stress tests 
and set risk-adjusted decision boundaries, which 
enable decision-makers to make decisions under 
uncertainty with greater confidence. 

IV. AI-INTEGRATED ENERGY MANAGEMENT SYSTEMS 

A computer program called AI can be used in an energy 
management system to quickly and accurately process and 
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evaluate data. It can also be used to predict how much energy 
used in the future, find strange patterns, and sort individual 
user load curves into groups [1]. There is a lack of practical 
experience in evaluating energy management systems 
powered by AI at this time [32]. Companies, particularly 
SMEs, are hesitant to use such systems for a number of 
reasons. These include insufficient knowledge of AI, concerns 
about the expense, and a lack of necessary resources and 
datasets.  

A. Cloud-Based and Edge AI Solution 

The number of IoT devices is growing very quickly, which 
means there is a huge amount of raw data that needs to be 
handled right now. Traditional cloud-native businesses are 
struggling to keep up with this boom due to rising latency, 
network congestion, and security issues. Decisions need to be 
made in real time in services like remote patient monitoring 
and self-driving automobiles, when delay might be fatal 
[33][34]. As a result of these changes, Edge-AI has been 
slowly replacing traditional AI. It enables processing with low 
latency close to the data source, at the network's edge. Figure 
3 represents a comparison between AI CC and edge 
computing. Consequently, Edge-AI improves system 
responsiveness and saves bandwidth use by cutting down on 
the quantity of raw data that needs to be transferred to the 
cloud [35]. 

 

Fig. 3. Comparison b/w AI cloud and Edge computing 

Advantages of Edge-AI: Edge nodes lack the processing 
capability of centralized cloud architecture, despite all its 
benefits. Complex AI models may demand more processing 
power than what edge devices can provide on their own. When 
it comes to supporting edge intelligence, cloud computing is 
the way to go [36]. Train AI models on the cloud, which 
provides a scalable platform for deploying deep learning and 
ML algorithms.  

The benefits of both the cloud and the edge may be 
harnessed in a hybrid AI system through smart task 
distribution. Although compute-intensive operations like 
model retraining and large data analytics take place in the 
cloud, edge computing handles real-time inference and low-
latency jobs. To address the limitations of existing Edge-AI 
solutions, it integrates the lightning-fast processing power of 
the edge with the cloud-based precision that is required[37]. 

B. Monitoring-AI and Control Architectures 

Monitoring is made up of a number of tasks that are 
needed to prepare the data. Data collection is the primary 
concern of smart buildings, which encompasses a wide range 
of technologies such as smart sensors and smart meters set up 
at different levels (appliances, dwellings, buildings, etc.) or 
the combination of sensors to determine resident habits. The 
IoE is a distributed smart energy infrastructure that has 
recently arisen as a result of advancements in both device 
consumption and networked dispersed elements. It relies on 
the exchange of data between devices online [38]. Displayed 

in Figure 4 are the artificial intelligence methods employed for 
monitoring tasks in the investigated papers. 

 

Fig. 4. Summary of AI techniques in monitoring tasks 

In the process of gathering data, suggest a Smart EMS 
design with three parts. The data collection module is the 
initial part of the system and is responsible for sensing various 
kinds of data (including weather conditions), receiving status 
signals from units that produce or consume energy, and 
processing them. To prepare the data, the data fuser module 
finds outliers and missing data, and then uses a K-means 
clustering approach to find the centroids of each class to 
replace them. At last, it eliminates correlated characteristics 
by combining many variables to calculate new attributes based 
on their correlations. 

V. LITERATURE REVIEW 

Based on this literature review has shown that ML and DL 
models have a high value in enhancing load forecasting, 
predictive maintenance, and energy optimization in industrial 
and building energy systems. Complex architectures like 
LSTMs, CNNs, and composite models are superior to 
traditional ones and are more efficient in scheduling, grid 
stability, and operational stability. 

Gaddala and Kollati (2025) The trends in AI, which are 
defining sustainable data centers, are geared towards 
optimization, predictive analytics, machine learning 
applications, and their implication on operational efficiency 
and environmental effects. Artificial intelligence (AI) has 
grown fast and has brought about a considerable effect on the 
operations of the data centers hence the need to adopt 
sustainable practices. The industry is being transformed by 
new trends like AI powered energy optimization, integration 
of solar energy and new cooling technologies. These 
inventions are to conserve energy as well as minimizing 
carbon footprints, and improving operation efficiency. With 
the help of AI, data centers are able to anticipate the 
maintenance requirements and optimize energy consumption 
as well as responsiveness to the real-time needs [39]. 

Baraskar (2025) The essential but unseen components of 
contemporary artificial intelligence are the hundreds of 
processors, graphics processing units (GPUs), and 
accelerators that are integrated into every single gadget on 
Earth. This includes cars, refrigerators, printers, phones, social 
networks, and more. Many people and the economy have to 
pay a heavy price for this computer revolution. Information 
technology data centers that house artificial intelligence are 
among the most power-hungry parts of the network. Data 
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handling and storage, as well as dissipating the enormous 
amounts of heat produced, need twenty-four-hour electricity. 
Carbon emissions increase with each use, putting a burden on 
power grids throughout the world and adding to climate 
change. Wherever else power generation is still dependent on 
fossil fuels, the environmental toll is disproportionately high 
[40]. 

Khurram and Hussain (2024) conversation about how the 
coming together of quantum algorithms, renewable energy 
integration into data centers, and art AI revolutionize energy 
use management and cybersecurity. By utilizing quantum 
algorithms, data centers may maximize the usage of 
renewable energy sources such as solar and wind while 
minimizing the use of traditional, non-renewable sources. 
Quantum algorithms make prediction more precise, optimize 
energies more efficiently in real-time and balance loads, 
which make data centers more energy efficient and resistant 
[41]. 

Goble (2023) the application of AI to enhance 
sustainability in cloud data centers, in particular, to optimize 
energy, balance workloads, and use smart cooling systems. 
The adoption of AI in cloud computing infrastructure is a 
chance of attaining long-term sustainability and carbon 
neutrality. The purpose of AI in sustainable cloud computing 
is critical in exploiting energy issues around the world and 
creating a digital ecosystem based on intelligence and green 

cooling options. The automation made by AI gives cloud 
providers the ability to predict and deal with the energy 
inefficiencies and minimize waste and increase the overall 
system reliability [42]. 

Kumar, Khatri and Diván (2022) The need for data center 
hosting is on the rise due to the growing computation and 
storage demands of cloud services platforms and information 
technology (IT). This, in turn, leads to a growth in the demand 
for energy, which is needed to power the IT devices and cool 
the data center. The increasing demands placed on data center 
facilities have made it more difficult to optimize power usage 
without compromising data center energy quality [43]. 

Suryadevara (2021) Energy-proportional computing 
focuses on the efforts to reach the most efficient energy usage 
in data centers, where the workload is directly related to the 
energy consumption. It discusses the concepts and practical 
applications of energy-proportional data center computing. 
Design principles such as energy-conscious scheduling, 
adaptive resource allocation, and dynamic power management 
are studied [44]. 

Table II is a summary of AI-based sustainable data center 
energy management, including optimization strategies, 
efficiency benefits, environmental concerns, and future trends 
of more green, intelligent infrastructure. 

TABLE II.  AI-BASED TECHNIQUES FOR SUSTAINABLE DATA CENTER ENERGY MANAGEMENT 

Authors (year) Focus Area Key Findings Approaches Objectives Future Work 

Gaddala & 
Kollati (2025) 

AI-driven 
sustainable 

data center 

operations 

AI significantly enhances 
operational efficiency and 

reduces environmental impact 

through intelligent optimization 
and predictive analytics 

Machine learning–based 
energy optimization, 

predictive maintenance, 

real-time workload 
adaptation 

Improve energy 
efficiency, reduce 

carbon footprint, and 

enhance the 
sustainability of data 

centers 

Integration of advanced 
AI models with large-

scale renewable energy 

systems and autonomous 
decision-making 

frameworks 

Baraskar (2025) Environmental 
and economic 

impact of AI 

data centers 

Data centers that house artificial 
intelligence need a lot of 

electricity, which puts a strain 

on the grid and causes carbon 
emissions to rise, particularly in 

areas that rely on fossil fuels. 

Large-scale 
CPU/GPU/accelerator-

based computing 

infrastructure analysis 

Highlight the 
sustainability 

challenges and energy 

consumption risks of 
AI-driven 

infrastructures 

Development of greener 
AI hardware, energy-

aware AI workloads, and 

policy-driven 
sustainability 

frameworks 

Khurram & 

Hussain (2024) 

AI, quantum 

computing, 
and renewable 

energy 

integration 

Quantum algorithms can 

significantly improve 
renewable energy utilization, 

forecasting accuracy, and 

cybersecurity in data centers 

Quantum algorithms for 

energy optimization, load 
balancing, and renewable 

energy forecasting 

Improve sustainability, 

resilience, and energy 
efficiency while 

decreasing use of fossil 

fuels. 

Practical deployment of 

quantum–AI hybrid 
systems and scalability 

evaluation in real-world 

data centers 

Goble (2023) AI-enabled 

sustainability 

in cloud data 
centers 

AI improves workload 

balancing, intelligent cooling, 

and energy optimization, 
supporting carbon-neutral cloud 

operations 

Deep learning, 

automation, real-time 

analytics, intelligent 
cooling mechanisms 

Achieve long-term 

sustainability and 

carbon neutrality in 
cloud computing 

Quantum computing and 

AI integration and cloud 

orchestration with 
renewable energy in 

mind 

Kumar, Khatri 

& Diván (2022) 

Power 

efficiency 
optimization 

in data centers 

Machine learning-based 

techniques effectively improve 
power usage effectiveness 

(PUE) without compromising 
energy quality 

ML-based power 

optimization, energy 
quality monitoring, and 

intelligent control 
systems 

Optimize power usage 

and ensure reliable 
energy quality under 

increasing IT 
workloads 

Adaptive and real-time 

ML models for 
heterogeneous and large-

scale data center 
environments 

Suryadevara 

(2021) 

Energy-

proportional 

computing in 
data centers 

Energy consumption can be 

aligned proportionally with 

workload through dynamic 
resource and power 

management 

Agile resource 

allocation, virtualization, 

consolidation, and 
energy-aware scheduling 

are all aspects of dynamic 

power management. 

Achieve optimal energy 

efficiency and reduce 

energy wastage 

Integration of energy-

proportional techniques 

with AI-driven predictive 
control and next-

generation cooling 

technologies 

VI. CONCLUSION AND FUTURE WORK 

 Energy optimization in data centers using AI techniques. 
The exponential growth of computing workloads in today's 
data centers is causing significant problems, such as excessive 
energy usage, high operational expenses, and negative effects 

on the environment. Adaptive and predictive methods for 
managing energy usage are offered by AI-based solutions, as 
demonstrated in the review. These solutions include ML, DL, 
RL, and hybrid AI-optimization algorithms. These techniques 
facilitate predictions of loads with high accuracy, intelligent 
control of the cooling process, dynamic resource scheduling, 
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and enhancement of energy proportionality reducing the 
amount of energy wasted as well as the performance and 
reliability of the system. Additionally, the IoT and edge-cloud 
AI systems will enhance real-time monitoring and data 
interconnection and control to create scaled and responsive 
energy management systems. Overall, the findings support the 
belief that AI-driven energy management is a significant 
instrument in improving the efficiency, sustainability, and 
resilience of data center operations, which are one of the 
enablers of green and smart data centers. 

Further studies are required on mass real-life 
implementation of AI-based energy management systems, 
combination with renewable energy sources and carbon-
conscious scheduling and the exploitation of explainable and 
trustworthy AI. Besides, studying quantum-AI hybrids and 
framework benchmarking can also increase scalability and 
adoption. 
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