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Abstract—The manufacturing and energy industry are
typical complex large systems which cover a long cycle such as
design, production chain, production or operation, after-sales,
etc. This review is a thorough analysis of the current quality
management practices in manufacturing and warehousing,
which have undergone changes due to Industry 4.0. It combines
articles about classical quality control models, conditions of
utilization of statistical methods, and cutting-edge artificial
intelligence-software-powered  optimization  tools.  The
evaluation shows that these technologies such as machine
learning, deep learning, reinforcement learning, and digital
twins will contribute to the processes becoming more stable,
defects’ catching being improved, and predictive maintenance
being the most efficient. Other topics discussed include the
impact of cloud and edge computing on the capacity of real-time
decision-making to be enlarged and the decision-making to be
more efficient. Besides, in warehousing, the review points out
smart systems, RFID, blockchain, temperature-humidity
monitoring, and automation as the main factors that contribute
to operational excellence and sustainability. All in all, it is a
matter of how integrated, data-driven, and environmentally
friendly practices that are able to handle the quality, reliability,
and resilience concerns of modern industrial systems.

Keywords—Quality Management, Industry 4.0, Machine
Learning, Deep  Learning, Predictive ~ Maintenance,
Manufacturing Systems.

l. INTRODUCTION

Inventory management is an essential component of
company management operations. Nowadays, lowering
inventory levels in manufacturing [1] companies aids in the
prompt identification and resolution of production-related
problems. This strategy reduces expenses while improving the
company management environment and operational
management effectiveness [2]. It has therefore emerged as a
crucial tactic for raising the standard of operational
management in manufacturing businesses. The manufacturing
sector, which creates well-paying employment and makes a
substantial contribution to GDP [3], is essential for social
advancement, economic growth, and innovation. The Fourth
Industrial Revolution, or Industry 4.0, is changing the industry
through digital technology, increasing its influence.
Innovations like cyber-physical networks, the Internet of
Things (10T), Al, big data analytics, as well as digital twins—
all of which support automated and networked manufacturing
are driving this change.

© JGREC 2025, All Rights Reserved

Traditional cost analyses in manufacturing areas are not
designed to collect certain groups of quality costs [4], such as
intangible costs that have marked subjective and qualitative
characters [5]. Quality departments are used to disregard
intangible costs because there are no efficient methodologies
to measure and control them [6]. Thereby, the real amount of
quality costs used to be hidden in the total costs of companies.

Large-scale, high-dimensional data has been produced in
recent years due to the exponential rise of digital systems.
This tendency is especially noticeable in contemporary
manufacturing, where the use of distributed and decentralized
architectures has been a significant change [7]. Artificial
intelligence (Al) [8] approaches are used to allow systems
(machines and equipment) to learn from information and data
gathered from their external environment. Al techniques are
divided into four main categories: cognitive thinking, human
behavior, rational thought, and rational acting [9]. The way
that natural creatures and human cognitive systems handle
information through processes like learning, adaption,
reproduction, and survival typically serves as an inspiration
for Al algorithms. Machine Learning (ML) techniques have
great promise for manufacturing organizations due to recent
improvements such a significant reduction in processor
computing times and advancements in algorithms. However,
a World Economic Forum poll finds that there is a gap among
ML abilities [10] & operational requirements, as well as a lack
of expertise at the nexus of ML and execution, which results
in a poor implementation. In this sense, reinforcement
learning (RL)-based scheduling techniques have shown to be
a helpful tool. Within the larger field of machine learning,
reinforcement learning is a subfield [11]. Production
managers can engage with a complicated industrial
environment, learn from past experiences, and make the best
choices thanks to reinforcement learning (RL), which is
regarded as one of the most perspective ways for robust
cooperative scheduling.

A. Structure of the paper

The paper is structured as follows: Section Il explains the
manufacturing qualities in storage systems, Section Il
describes the integration of Al and data-driven quality
management systems. Section IV dives into the topic of
quality optimization in warehouses, while Section V literature
review is presented and finally, Section VI wraps up the
research with important conclusions and suggestions for
future studies.
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Il.  QUALITY MANAGEMENT IN MANUFACTURING
STORAGE SYSTEMS

The present-day manufacturing sector, which is marked by
very strong competition and strict environmental regulations,
can gain a competitive edge and be more successful in dealing
with current challenges by adopting the most effective
management practices.

A. Dimensions of Quality Management in Manufacturing

Reliability and quality are interconnected aspects of
product engineering, focusing on ensuring products meet
performance specifications and safety requirements under
specified conditions [12]. The primary objective of QC is to
maintain consistency in product or service quality, minimize
defects and errors, and enhance customer satisfaction [13].
Certain aspects to keep in mind during the manufacturing
process of the products to maintain their quality are as follows
and represented in Figure 1:

Dimensionality Aspects for Quality Management

Maintainability >
Availability >

Fig. 1. Quality Management Aspects

Reliability

Safety

e Reliability refers to a hardware system's or
component's capacity to operate under specified
conditions for a certain amount of time [14].
Reliability in industrial systems is fundamental for all
such  activities, i.e., avoiding malfunctions,
inconsistency in product quality, and, above all,
eliminating downtime. A Reliable system or
component must be able to work at its best even under
extreme conditions such as high temperatures or heavy
loads.

¢ Auvailability is the extent to which an entire framework
or element is available and functional when needed. A
fully accessible system refers to one that has relatively
low downtime or interruptions and is constantly
prepared to carry out its intended function.
Manufacturers' version of the "salesperson™ promotes
the sales team working to chase after prospective
clients and high-gain sales ratios.

e Maintainability is the degree to which a system or
part can be modified or replaced to mend faults,
increase its capabilities or adapt to a different setting.
A maintained system must be easy to upgrade or
change without requiring costly repairs or taking long
periods of time. Maintainability is very important in
industrial applications for keeping production breaks
short and cutting maintenance expenses.

o Safety pertains to a system's or component's capacity
to operate without endangering people or the
environment. The creation and execution of a safe
system ought to decrease the possibility of accidents or
harm to the environment. Safety is essential in
industrial processes to safeguard employees and
reduce the possibility of errors or defective goods.
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B. Traditional Quality Control Setup for Manufacturing
Processes

Adaptability of a distribution, system capabilities, and
transfer learning all work together to accomplish quality
control for novel functioning points. Figure 2 shows the
elements, and the following is a summary of the methods:

Quality Control Elements I

System

Anomaly

Monitoring
Detection Procedure

System

Updating

Fig. 2. Elements of the Quality Control Elements

e Anomaly Detection System: Every production cycle
both nominal and non-nominal passes through the
models that have already been trained and emerges as
an early prediction [15]. A multivariate Gaussian
spectrum is mapped onto the nominal initial predictors
using the anomaly identification approach, and an
appropriate threshold value is chosen using the not-
nominal early predictors (anomalies).

e Monitoring Procedure: The final quality control
system consists of the pre-trained systems coupled
with the anomaly detector. Each new production
cycles will be marked as either nominal or non-
nominal in this manner.

e System Updating: While the weights of the pre-
trained system are frozen, the multivariate Gaussian
distribution will be updated using the collection of a
specific number of manufacturing cycles following
each machine maintenance (the precise amount will
rely on the typology of the process to be monitored).
This will account for a growing percentage of the
machine's functioning units.

C. Standards and Frameworks

In the sphere of manufacturing, the quality control strategy
is crucial since it directly affects product dependability and
operational efficiency. This research creates an innovative
structure that skillfully fuses the Six Sigma approach with
statistical process control (SPC) and employs advanced
technology such as real-time monitoring and predictive
analytics to address this basic issue.

Statistical Process Control (SPC): With the help of
statistical methods, Statistical Process Control (SPC) is a
quality control technique that monitors and analyzes the
manufacturing process fluctuations in order to ensure the
reliability of the process and the uniformity of the product
quality.

Six Sigma: Six Sigma is an organizational strategy that
seeks to eliminate defects and boost quality and efficiency
with a normal limit of up to 3.4 defects per million
opportunities. The latter is defined by this data-based
technique as giving ultimate output through process stability
and reduced variance.

I1l.  AI-POWERED AND DATA-DRIVEN QUALITY
OPTIMIZATION

The current condition of industrial engineering is the
outcome of a series of innovative and economically significant
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developments in the manufacturing sector [16]. Machine
learning and artificial intelligence have been foundational in
revolutionizing the manufacturing industry. The partnership
between these technologies is what gives rise to the current
concept of "data-driven process optimization," which employs
both computer intelligence and statistical science to perform a
thorough optimization of industrial processes.

A. Role of Al in Process Optimization

Al has emerged as a revolutionary force in manufacturing
with the advent of Industry 4.0. Al models may be trained
from raw, complicated, and large amounts of data, in contrast
to statistical approaches that need organized, predetermined
hypotheses. Al is particularly useful in situations where
process dynamics are unexpected or impacted by a variety of
circumstances because of its capacity to evolve in real-time.

1) Machine Learning for Predictive Modeling

The application of machine learning methods to estimate
yield, anticipate faults, and suggest ideal process parameters
is growing. To find patterns and correlations that are too
complicated for conventional analysis, methods like support
vector machines, decision trees, as well as gradient boosting
systems undergo training on historical process data.

e Support Vector Machines: Support Vector Machines
(SVMs) are commonly used for both regression and
classification problems. SVM techniques have
demonstrated comparable performance to or even
superior performance over other machine learning
algorithms, hence, they are a significant asset for
optimization procedures.

o Decision Trees: Decisions trees are constructed in
phases of growing and pruning. According to some
splitting rules, the training data (samples) are regularly
divided into two or more descendant subgroups during
the growth phase until every instance of each subset
encompasses the same class (pure) or a halting
threshold is met.

¢ Gradient Boosting: Gradient Boosting is an ensemble
method in machine learning that builds prediction
models one at a time. The process is to combine a
number of weak learners, usually decision trees, such
that each new model attempts to correct the errors
made by the previous one. The outcome of this
repeated procedure is a very reliable and accurate
prediction model.

2) Deep Learning and Visual Representation

The visual inspection systems utilize deep learning
algorithms which are convolutional neural networks (CNNSs)
for detecting problems with the surface like scratches, bumps,
and very small defects. The models reduce the labor for
manual inspections to a great extent since they quickly and
accurately process the visual data and assign it subclasses.

e Convolutional Neural Networks: The conventional
CNN architecture is composed of pooling,
convolutional, and fully linked layers. The filters in the
convolutional layers are learned through a series of
local information applications, which can be gathered
from the input data at different spatial scales. In order
to reduce the spatial dimensions while offering
translation invariance, the pooling layers minimize the
feature maps. The ultimate prediction or classification
job is subsequently carried out by the fully connected
layers, which aggregate the learnt characteristics.
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e Long Short-Term Memory: One kind of recurrent
neural network (RNN) that works well for modelling
sequential data with long-term dependencies is an
LSTM network. LSTM networks are able to learn
patterns and correlations that span several time steps
[17], as well as the chronological progression of sensor
data in the industrial setting.

3) Reinforcement Learning for Process Control
Reinforcement learning is used in situations where
autonomous decision-making as well as adaptive control are
necessary. This covers dynamic resource allocation, robotic
assembly, & real-time parameter customization. Because
reinforcement learning models are always learning from input,
they are perfect for high-speed, data-intensive processes
where conventional control techniques are insufficient.

B. Digital Twins and Cyber Physical Systems

In the industrial sector, digital twins (DTs) are growing in
popularity because they provide the opportunity to apply ideas
like industry 4.0 and smart manufacturing [18]. DTs are digital
representations of physical resources that can be used to
improve the productivity, quality, and cost-effectiveness of
manufacturing systems. Through the use of cyber-physical
systems (CPSs), the continuing industrial revolution referred
to as Industry 4.0 is significantly altering production
processes. These networks allow for dynamic adaptability,
operational optimization, and enhanced response to changes
by fusing sophisticated computing technology with physical
production processes.

1) Digital Twins (DTs)

A DT can take several forms and usually utilizes a
combination of existing technologies, which differ from
project to project [19]. Figure 3 shows the DT technologies,
which include the following and discussed below:

DIGITAL TWINS

AV

Digital Thread

Corporate Information Systems

Data Analytics/ Al

Fig. 3. Digital Twin Technologies

e Digital Thread: The digital thread is particularly
relevant to shop floor product development and
manufacturing DTs. It provides the linkage and
connectivity between systems and technologies that
provide the data required by the DT.

e Corporate Information Systems: Corporate data,
especially that pertaining to manufacturing items, is
frequently used by DTs and is typically found in some
of the main business information systems.

o Data Analytics/Artificial Intelligence: Data analytics
is used in many DT initiatives to arrange and evaluate
data in order to support DT output as well as operation
[20]. DT analysis and reporting frequently make use of
sophisticated business intelligence tools like Power BI,
& Al applications may be created to improve system
& product prediction, simulation, and visualization
capabilities.
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2) Cyber Physical Systems (CPSs)

CPSs improve production systems'  robustness,
adaptability, and efficiency. The CPS is closely associated
with a number of technologies, including cloud computing
[21], 10T, wireless, and sensor networks. In Figure 4, the
technologies used in the CPSs:

‘[ Cyber Physical Systems (CPSs) J

|
J |

Internet of
Data (loD)

Internet of
Services (10S)

Internet of
Things (10T)

Fig. 4. Cyber Physical Systems Technologies

e Internet of Things (IoT): It involves interacting with
smart systems via IP addresses. This allows an IP
address to be assigned to any physical device.

e Internet of Services (I0S): It encompasses novel
communication formats like those provided by REST
technology and service-oriented design (SOA).

e Internet of Data (loD): Large volumes of data may be
efficiently sent and stored thanks to it, and creative
analytical methods for doing so can be developed.

3) Cloud and Edge Computing in Quality Management

In recent years, the focus on smart manufacturing systems
has been pushing the industry toward a new variety of highly
advanced technical solutions [22]. In fact, smart
manufacturing systems often incorporate smart quality
management optimization capabilities to reduce time and cost
in improving overall production efficiency through a
technology-oriented approach, such as Industry 4.0. In Figure
5, computing techniques for quality management are shown:

Edge Computing

y

Fig. 5. Computing Techniques used for Quality Management

e Edge Computing: Edge computing revolutionizes the
handling, processing, and use of data from different
industrial sources. Edge computing technology has
been increasingly popular in the industry recently [23].
The necessity for immediate decision-making, the
expansion of lloT-connected industrial resources, and
the use of data analysis techniques requiring low-
power processing technology are the driving forces
behind this decision.

e Cloud Computing: In terms of data storage and
processing power, cloud computing offers a great deal
of flexibility. Some providers make services available
through the pay-as-you-go formula, which lowers
initial investments by providing precise billing based
on the time and computational capacity needed [24].
Easy-to-use services are made possible by cloud
providers, who also manage hardware upkeep and
provide intuitive graphical user interfaces. The key to
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controlling workload peaks is the architecture's
scalability, which is derived from the simplicity of
expanding storage areas and changing components,
even momentarily.

IV. OPTIMIZING QUALITY IN SYSTEMS FOR WAREHOUSING

A key element of the logistics sector, the warehouse stores
items, supplies, raw materials, and completed goods across the
supply chain [25]. For enterprises, it offers the capacity to
store, maintain, and prepare items, guaranteeing a smooth
supply of commodities on the basis of quantity as well as
quality. Warehouses are essential for maintaining proper
inventory levels, helping with product delivery, and efficiently
managing logistics information systems [26]. The warehouse,
a crucial component of business operations and the whole
logistics system, receives and transmits vast volumes of
knowledge and data to guarantee a seamless connection
between the producer and the customer.

A. Global Warehousing Forecasts

The demand for eco-friendly logistics solutions is rising as
conditions force extensive measures to lower waste
production, natural resource usage, and global emissions [27].
The need for storage is estimated to increase by 7.2% per year
worldwide, reaching a projected total value of $400 x 10° by
2025. The industrial subsector's faster growth rate begs the
question of whether the world is prepared to attain sustainable
warehousing at the same rate. In order to do this, warehouses
must implement best practices, low-impact environmental
methods, and design approaches that lower waste and energy
usage [28]. Adopting greener logistics framework initiatives
as well as investigating logistics-related technologies which
reduce carbon emissions and utilize more recyclable materials
are essential for warehouses to achieve sustainable
warehousing.

. L
| Air temperature and |

= humidity sensor

RS485 terminal

Fig. 6. Connection of the temperature and humidity monitoring system

e Temperature Controlled Warehouse’s Risk
Management: A crucial phase in supply- chain risk
administration is warehouses. One unique type of
warehousing is cold chain storage systems. Cold
storage improves the shelf life of fresh food items and
temperature-sensitive medications whereas reducing
disruptions within regulated temperature limits [29].
There are several dangers involved in the storage
operation. Uncontrolled storage temperature has a
direct impact on food nutritional value. The
temperature plays a pivotal role in maintaining the
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reliability and security of the goods [30]. Thus, it is
very crucial to monitor and control the temperature of
the food products throughout the entire cold chain.

e Humidity Control Monitoring: During the
temperature as well as humidity management
procedures inside the storage experimental framework,
the monitoring system examines the distribution
features of air humidity and temperature [31]. As
shown in Figure 6, the main components of the data
collecting setup are the humidity and temperature of
the air sensors, a wiring board, a hub, as well as a
computer. The FLEX1100 sensor has the ability to
look after the air temperature and humidity
concurrently. It can measure temperatures ranging
from -40 to +85°C with a precision of 0.3°C, while the
humidity can be measured from 0% to 100%RH with
a precision of £2%RH. The sensor has a size of 90 mm
X 47 mm.

e Cross Contamination Control: Cross-contamination
control can also occasionally be carried out under
forced air flow circumstances, such as by drawing air
through filter paper in a hoover filtering system for a
predetermined amount of time [32]. This method uses
a glass fibre filter paper with a 0.45 pum pore diameter
and a 1-hour filtering period.

B. Inventory Management in Warehousing

The overall economy's growth is being significantly
impacted by the present global financial crisis, creating
hitherto unheard-of difficulties [33]. The movement of raw
materials to final goods is optimized by supply chain (SC)
inventory management [34]. Manufacturers, suppliers,
distributors, importers, exporters, retailers, specialty stores,
and service providers are all involved in Product SC.

e RFID and Barcodes Systems: For many years,
supply chain management (SCM) has employed
barcoding, an advanced automated identification
(auto-1D) technique [35]. It is often used in free
governance, particularly in retail. Yet, radio frequency
identification (RFID) has recently been regarded as a
competitive technology that excels in both its non-line-
of-sight (nLoS) scanning capability and its capacity to
store and update instantaneous information.

e Blockchain Records for Tracking Provenance: As
soon as fresh artworks are brought into the warehouse,
their RFID tags are scanned, and the database is
instantly updated [36]. The blockchain is the one that
saves the verification results and drags the benefits of
immutability, transparency, and an extremely high
level of trust in the evaluation process. Data is
collected nonstop and can be analyzed right away once
a certain limit has been reached. The blockchain
records all the actions-productions, lending of
exhibitions, production, change of ownership and
restoration.

C. Smart Storage Systems

Modern technology, warehouse procedures [37], and
warehouse operations management now all depend on smart
warehouses. The following viewpoints may be used to
categorize the fundamental features of smart warehouses as
shown in Figure 7:
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Warehouse operations management

Smart warehouse

Environmental sustainability

Process
integration

Equipment
automation

Information interconnection

Fig. 7. The conceptual framework of a smart warehouse

e Information Interconnection: The top-level
architecture of smart warehouses incorporates
information linkage. It is the cornerstone of operational
management and smart warehousing. Information flow
may be exchanged and processed by several logistics
nodes, generating additional value thanks to
technologies enabled by the Internet of Things (loT),
cyber-physical systems (CPS), and other emerging
technologies.

e Equipment Automation: The both tactical and
strategic features of a smart warehouse are described
by equipment automation. The smart warehouse's
technical foundation is automation. Smart warehouses
may attain substantial levels of automation in
warehouse operations when they are provided with
automated amenities [38]. While lowering the demand
for physical labor, equipment automation can increase
warehouse productivity.

e Process Integration: Process integration serves as
operational assistance within the framework and is a
prerequisite  for smart warehouse operations
management. Process integration focuses on the new
operational issues that arise in the administration of
smart warehouses and attempts to establish overall
planning among diverse warehouse activities. The
prime aim of process integration is the killing of
conflicts in harmonious understanding between
warehouse owner-managers.

e Environmental Sustainability: Smart warehouses
primarily aim for environmental sustainability and this
is furthered through integration of workflows and
automation of equipment. The green development of
smart warehouses is turning the spotlight on the issues
of the environment such as carbon generation and
energy consumption. In order to provide a sustainable
roadmap for the warehouse department, the strategic,
tactical, as well as operational management processes
of smart warehouses should be implemented in an
environmentally responsible manner.

V. LITERATURE REVIEW

This section reviews the existing literature on Quality
Manufacturing in Storage Systems, concentrating on the
service management, blending challenges, and security of the
real-time manufacturing sources and systems for maintaining
the performance of the system.

Krishnakumar and R (2025) proposed system benefits
greatly from the transfer learning paradigm since this
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approach greatly cuts the computational cost and data demand
compared with other approaches. The study looks at the
generalizability of the system to other manufacturing domains
and the inclusive applicability of the approach. This work
details how computer vision and transfer learning is reshaping
the manufacturing landscape today, and provides a basis for
anticipating future trends in AOI [39].

Gowda et al. (2024) study presents a new framework that
incorporates IloT services for the enhancement of
manufacturing processes and quality assurance. The key
components include the use of real-time data capture,
analyzing and decision supporting systems with the goal of
enhancing production operations, reducing excessive time and
decline in product quality. It also showed that the
effectiveness in manufacturing and the establishment of
quality control proved to be much effective in comparison to
conventional procedures [40].

Yadla, Dcoutho and Kulkarni (2024) this research focuses
on the development of Smart Manufacturing and Management
System (SMMS) framework to address the manufacturing
challenges in cable manufacturing, by acquiring
manufacturing characteristics and converging to cyber
systems for smart analytics interfacing physical machines,
virtual systems, managers, and shop floor operators. The
proposed SMMS has been implemented in cable
manufacturing and it has shown the potential to reduce the
manufacturing time to ~20% and cost to AUD 180,000 per
annum [41].

Zhang, Zou and Cheng (2024) in this industry background,
the traditional witness method of equipment manufacturing
supervision is not only inadequate, but also difficult to find
problems and inefficient. Based on the witness of
manufacturing supervision, laboratory sampling inspection
and on-site inspection after equipment installation can more
comprehensively find the quality defects of energy storage
equipment in the process of manufacturing, transportation and
installation, and ensure the safe and reliable operation of the
equipment [42].

Zhang et al. (2023) in the equipment manufacturing
process of the first 300MW level CAES demonstration
project, the supervision system was optimized, the supervision
content was added, new supervision strategies were proposed,
and the beneficial impact on the factory quality of the
equipment was discussed. Through two cases, it has been
confirmed that the supervision system under the new model
can meet the practical needs of CAES and effectively improve
equipment quality. The optimization of the supervision system
can also provide guidance for the quality control of other
immature equipment [43].

Lyu (2023) in this paper, the hierarchy of technical
architecture of intelligent manufacturing internal control
system based on digital twin is defined. The construction
mechanism of multi-level and multi-dimensional virtual
workshop is put forward, and the basic unit model of multi-
dimensional fusion is described. A data architecture model of
data collection, processing, storage and control driven by twin
data is proposed. This research aims to provide some reference
for the efficient development of internal control in the
intelligent  manufacturing process of manufacturing
enterprises [44].

P and Nugraha (2022) study will focus on blockchain
applied to traceability system as database technology because
it can minimize the shortcomings of the database with
conventional method. The results show that the data
traceability system can trace procedures well and the data
running well according to its function in storing data with
blockchain. Based on these results, the traceability system in
this study can trace procedures in achieving quality objectives
in 1ISO 9001 [45].

Table I highlights recent studies on Quality Manufacturing
in Storage Systems, focusing on the study motive,
technologies involved in  manufacturing  products,
contributions of the previous studies, benefits and the
applications in quality management for the in the storage
systems.

TABLE . EXISTING LITERATURE OF RECENT STUDIES ON QUALITY MANUFACTURING IN STORAGE SYSTEMS
Reference Study Focus Technology Key Contributions Improvements Reported Application
Domain
Krishnakumar | Transfer learning for | Computer Vision, | Demonstrated reduced data | Increased efficiency, | Automated Optical
& R (2025) AOI and manufacturing | Transfer Learning | and computational | lower computational cost, | Inspection  (AOl),
generalization requirements; explored cross- | scalable AOI processes general
domain generalizability manufacturing
Dankan Enhancing IloT, Real-time | Developed framework | Improved production | General
Gowda et al. | manufacturing processes | data capture, | integrating real-time | efficiency, reduced time | manufacturing and
(2024) and QA using IloT | Decision support | monitoring and analytics wastage, enhanced | Quality Assurance
services systems product  quality  vs.
traditional methods
Yadla, Smart Manufacturing & | Cyber-physical Implemented SMMS | Reduced manufacturing | Cable manufacturing
Dcoutho & | Management  System | systems, Smart | integrating physical and virtual | time by ~20%, cost
Kulkarni (SMMS)  for cable | analytics, SMMS systems,  operators, and | savings of AUD
(2024) manufacturing managers 180,000/year
Zhang, Zou & | Improving supervision | Laboratory Proposed combined inspection | Improved defect detection, | Energy storage
Cheng (2024) | in equipment | sampling approach to identify defects | enhanced reliability of | equipment
manufacturing with | inspection, On-site | across manufacturing and | energy storage equipment | manufacturing &
inspections inspection installation stages installation
Zhang et al. | Optimizing supervision | Supervision Added new strategies and | Improved equipment | CAES (Compressed
(2023) system  for CAES | system content to supervision | quality; provided guidance | Air Energy Storage)
equipment optimization framework; validated | for quality control of | equipment
manufacturing improvements via two cases emerging equipment manufacturing
Lyu (2023) Internal control system | Digital Twin, | Proposed architecture for twin- | Enhanced efficiency of | Intelligent
architecture for | Multidimensional driven data collection, | internal control processes | manufacturing
intelligent virtual workshop processing, and control enterprises
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manufacturing using
digital twin
P & Nugraha | Blockchain-based Blockchain Developed reliable traceability | Improved traceability | Quality
(2022) traceability system for system meeting ISO 9001 | accuracy; reduced | management,
quality management quality objectives limitations of conventional | Traceability systems
databases

VI. CONCLUSION AND FUTURE WORK

Over time, manufacturing productivity and quality have
grown due to the effects of the industrial revolutions on
production processes. From the 1990s until the emergence of
the fourth industrialization, or Industry 4.0, lean approaches
drove the growth of production systems. The combination of  [9]
emerging Industry 4.0 technologies and quality management
practices of the highest standards is proven to be the key factor
in bringing forth the performance improvements in
manufacturing and warehousing. Using Al-based analytics,
digital twins, cyber-physical systems, and cloud-edge
computing technology, the companies can get to the point of
having almost identical products, less defective units, and
more operations flows that are not interrupted. In the case of [11]
warehouses, smart systems, automation, and environmental
monitoring take the role of strengthening supply chain
resilience and sustainability. The study reveals that the future
of industrial excellence is built upon data-driven,
interconnected, and adaptive systems that not only allow
companies to be competitive but also support them in the
process of complying with the enhanced requirements [13]
regarding efficiency, safety, and environmental impact.

(8]

[10]

[12]

Future studies may focus on the mixing up of autonomous
Al systems, sophisticated digital twins, and cloud-edge [14]
architectures, with the possibility of digitally enhanced
forecasting and real-time decision management as the main
area of study. Sustainability-oriented warehousing solutions
will be extended and standardized throughout the industry, [15]
which will not only boost the effectiveness but also the
resilience and eco-friendliness of the manufacturing and

storage sectors of the next generation. [16]
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