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Abstract—The manufacturing and energy industry are 

typical complex large systems which cover a long cycle such as 

design, production chain, production or operation, after-sales, 

etc. This review is a thorough analysis of the current quality 

management practices in manufacturing and warehousing, 

which have undergone changes due to Industry 4.0. It combines 

articles about classical quality control models, conditions of 

utilization of statistical methods, and cutting-edge artificial 

intelligence-software-powered optimization tools. The 

evaluation shows that these technologies such as machine 

learning, deep learning, reinforcement learning, and digital 

twins will contribute to the processes becoming more stable, 

defects' catching being improved, and predictive maintenance 

being the most efficient. Other topics discussed include the 

impact of cloud and edge computing on the capacity of real-time 

decision-making to be enlarged and the decision-making to be 

more efficient. Besides, in warehousing, the review points out 

smart systems, RFID, blockchain, temperature–humidity 

monitoring, and automation as the main factors that contribute 

to operational excellence and sustainability. All in all, it is a 

matter of how integrated, data-driven, and environmentally 

friendly practices that are able to handle the quality, reliability, 

and resilience concerns of modern industrial systems. 

Keywords—Quality Management, Industry 4.0, Machine 

Learning, Deep Learning, Predictive Maintenance, 

Manufacturing Systems. 

I. INTRODUCTION 

Inventory management is an essential component of 
company management operations. Nowadays, lowering 
inventory levels in manufacturing [1] companies aids in the 
prompt identification and resolution of production-related 
problems. This strategy reduces expenses while improving the 
company management environment and operational 
management effectiveness [2]. It has therefore emerged as a 
crucial tactic for raising the standard of operational 
management in manufacturing businesses. The manufacturing 
sector, which creates well-paying employment and makes a 
substantial contribution to GDP [3], is essential for social 
advancement, economic growth, and innovation. The Fourth 
Industrial Revolution, or Industry 4.0, is changing the industry 
through digital technology, increasing its influence. 
Innovations like cyber-physical networks, the Internet of 
Things (IoT), AI, big data analytics, as well as digital twins—
all of which support automated and networked manufacturing 
are driving this change. 

Traditional cost analyses in manufacturing areas are not 
designed to collect certain groups of quality costs [4], such as 
intangible costs that have marked subjective and qualitative 
characters [5]. Quality departments are used to disregard 
intangible costs because there are no efficient methodologies 
to measure and control them [6]. Thereby, the real amount of 
quality costs used to be hidden in the total costs of companies. 

Large-scale, high-dimensional data has been produced in 
recent years due to the exponential rise of digital systems.  
This tendency is especially noticeable in contemporary 
manufacturing, where the use of distributed and decentralized 
architectures has been a significant change [7]. Artificial 
intelligence (AI) [8] approaches are used to allow systems 
(machines and equipment) to learn from information and data 
gathered from their external environment. AI techniques are 
divided into four main categories: cognitive thinking, human 
behavior, rational thought, and rational acting [9]. The way 
that natural creatures and human cognitive systems handle 
information through processes like learning, adaption, 
reproduction, and survival typically serves as an inspiration 
for AI algorithms. Machine Learning (ML) techniques have 
great promise for manufacturing organizations due to recent 
improvements such a significant reduction in processor 
computing times and advancements in algorithms. However, 
a World Economic Forum poll finds that there is a gap among 
ML abilities [10] & operational requirements, as well as a lack 
of expertise at the nexus of ML and execution, which results 
in a poor implementation. In this sense, reinforcement 
learning (RL)-based scheduling techniques have shown to be 
a helpful tool.  Within the larger field of machine learning, 
reinforcement learning is a subfield [11].  Production 
managers can engage with a complicated industrial 
environment, learn from past experiences, and make the best 
choices thanks to reinforcement learning (RL), which is 
regarded as one of the most perspective ways for robust 
cooperative scheduling. 

A. Structure of the paper 

The paper is structured as follows: Section II explains the 
manufacturing qualities in storage systems, Section III 
describes the integration of AI and data-driven quality 
management systems. Section IV dives into the topic of 
quality optimization in warehouses, while Section V literature 
review is presented and finally, Section VI wraps up the 
research with important conclusions and suggestions for 
future studies. 
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II. QUALITY MANAGEMENT IN MANUFACTURING 

STORAGE SYSTEMS 

The present-day manufacturing sector, which is marked by 
very strong competition and strict environmental regulations, 
can gain a competitive edge and be more successful in dealing 
with current challenges by adopting the most effective 
management practices. 

A. Dimensions of Quality Management in Manufacturing 

Reliability and quality are interconnected aspects of 
product engineering, focusing on ensuring products meet 
performance specifications and safety requirements under 
specified conditions [12]. The primary objective of QC is to 
maintain consistency in product or service quality, minimize 
defects and errors, and enhance customer satisfaction [13]. 
Certain aspects to keep in mind during the manufacturing 
process of the products to maintain their quality are as follows 
and represented in Figure 1:  

 

Fig. 1. Quality Management Aspects 

• Reliability refers to a hardware system's or 
component's capacity to operate under specified 
conditions for a certain amount of time [14]. 
Reliability in industrial systems is fundamental for all 
such activities, i.e., avoiding malfunctions, 
inconsistency in product quality, and, above all, 
eliminating downtime. A Reliable system or 
component must be able to work at its best even under 
extreme conditions such as high temperatures or heavy 
loads. 

• Availability is the extent to which an entire framework 
or element is available and functional when needed. A 
fully accessible system refers to one that has relatively 
low downtime or interruptions and is constantly 
prepared to carry out its intended function. 
Manufacturers' version of the "salesperson" promotes 
the sales team working to chase after prospective 
clients and high-gain sales ratios. 

• Maintainability is the degree to which a system or 
part can be modified or replaced to mend faults, 
increase its capabilities or adapt to a different setting. 
A maintained system must be easy to upgrade or 
change without requiring costly repairs or taking long 
periods of time. Maintainability is very important in 
industrial applications for keeping production breaks 
short and cutting maintenance expenses. 

• Safety pertains to a system's or component's capacity 
to operate without endangering people or the 
environment. The creation and execution of a safe 
system ought to decrease the possibility of accidents or 
harm to the environment. Safety is essential in 
industrial processes to safeguard employees and 
reduce the possibility of errors or defective goods. 

B. Traditional Quality Control Setup for Manufacturing 

Processes  

Adaptability of a distribution, system capabilities, and 
transfer learning all work together to accomplish quality 
control for novel functioning points. Figure 2 shows the 
elements, and the following is a summary of the methods: 

 

Fig. 2. Elements of the Quality Control Elements 

• Anomaly Detection System: Every production cycle 
both nominal and non-nominal passes through the 
models that have already been trained and emerges as 
an early prediction [15]. A multivariate Gaussian 
spectrum is mapped onto the nominal initial predictors 
using the anomaly identification approach, and an 
appropriate threshold value is chosen using the not-
nominal early predictors (anomalies). 

• Monitoring Procedure: The final quality control 
system consists of the pre-trained systems coupled 
with the anomaly detector. Each new production 
cycles will be marked as either nominal or non-
nominal in this manner. 

• System Updating: While the weights of the pre-
trained system are frozen, the multivariate Gaussian 
distribution will be updated using the collection of a 
specific number of manufacturing cycles following 
each machine maintenance (the precise amount will 
rely on the typology of the process to be monitored). 
This will account for a growing percentage of the 
machine's functioning units. 

C. Standards and Frameworks 

In the sphere of manufacturing, the quality control strategy 
is crucial since it directly affects product dependability and 
operational efficiency. This research creates an innovative 
structure that skillfully fuses the Six Sigma approach with 
statistical process control (SPC) and employs advanced 
technology such as real-time monitoring and predictive 
analytics to address this basic issue.  

Statistical Process Control (SPC): With the help of 
statistical methods, Statistical Process Control (SPC) is a 
quality control technique that monitors and analyzes the 
manufacturing process fluctuations in order to ensure the 
reliability of the process and the uniformity of the product 
quality. 

Six Sigma: Six Sigma is an organizational strategy that 
seeks to eliminate defects and boost quality and efficiency 
with a normal limit of up to 3.4 defects per million 
opportunities. The latter is defined by this data-based 
technique as giving ultimate output through process stability 
and reduced variance. 

III. AI-POWERED AND DATA-DRIVEN QUALITY 

OPTIMIZATION 

The current condition of industrial engineering is the 
outcome of a series of innovative and economically significant 
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developments in the manufacturing sector [16]. Machine 
learning and artificial intelligence have been foundational in 
revolutionizing the manufacturing industry. The partnership 
between these technologies is what gives rise to the current 
concept of "data-driven process optimization," which employs 
both computer intelligence and statistical science to perform a 
thorough optimization of industrial processes. 

A. Role of AI in Process Optimization 

AI has emerged as a revolutionary force in manufacturing 
with the advent of Industry 4.0. AI models may be trained 
from raw, complicated, and large amounts of data, in contrast 
to statistical approaches that need organized, predetermined 
hypotheses. AI is particularly useful in situations where 
process dynamics are unexpected or impacted by a variety of 
circumstances because of its capacity to evolve in real-time. 

1) Machine Learning for Predictive Modeling 
The application of machine learning methods to estimate 

yield, anticipate faults, and suggest ideal process parameters 
is growing. To find patterns and correlations that are too 
complicated for conventional analysis, methods like support 
vector machines, decision trees, as well as gradient boosting 
systems undergo training on historical process data. 

• Support Vector Machines: Support Vector Machines 
(SVMs) are commonly used for both regression and 
classification problems. SVM techniques have 
demonstrated comparable performance to or even 
superior performance over other machine learning 
algorithms, hence, they are a significant asset for 
optimization procedures. 

• Decision Trees: Decisions trees are constructed in 
phases of growing and pruning. According to some 
splitting rules, the training data (samples) are regularly 
divided into two or more descendant subgroups during 
the growth phase until every instance of each subset 
encompasses the same class (pure) or a halting 
threshold is met. 

• Gradient Boosting: Gradient Boosting is an ensemble 
method in machine learning that builds prediction 
models one at a time. The process is to combine a 
number of weak learners, usually decision trees, such 
that each new model attempts to correct the errors 
made by the previous one. The outcome of this 
repeated procedure is a very reliable and accurate 
prediction model. 

2) Deep Learning and Visual Representation 
The visual inspection systems utilize deep learning 

algorithms which are convolutional neural networks (CNNs) 
for detecting problems with the surface like scratches, bumps, 
and very small defects. The models reduce the labor for 
manual inspections to a great extent since they quickly and 
accurately process the visual data and assign it subclasses. 

• Convolutional Neural Networks: The conventional 
CNN architecture is composed of pooling, 
convolutional, and fully linked layers. The filters in the 
convolutional layers are learned through a series of 
local information applications, which can be gathered 
from the input data at different spatial scales. In order 
to reduce the spatial dimensions while offering 
translation invariance, the pooling layers minimize the 
feature maps. The ultimate prediction or classification 
job is subsequently carried out by the fully connected 
layers, which aggregate the learnt characteristics. 

• Long Short-Term Memory: One kind of recurrent 
neural network (RNN) that works well for modelling 
sequential data with long-term dependencies is an 
LSTM network. LSTM networks are able to learn 
patterns and correlations that span several time steps 
[17], as well as the chronological progression of sensor 
data in the industrial setting.  

 

3) Reinforcement Learning for Process Control 
Reinforcement learning is used in situations where 

autonomous decision-making as well as adaptive control are 
necessary. This covers dynamic resource allocation, robotic 
assembly, & real-time parameter customization. Because 
reinforcement learning models are always learning from input, 
they are perfect for high-speed, data-intensive processes 
where conventional control techniques are insufficient. 

B. Digital Twins and Cyber Physical Systems 

In the industrial sector, digital twins (DTs) are growing in 
popularity because they provide the opportunity to apply ideas 
like industry 4.0 and smart manufacturing [18]. DTs are digital 
representations of physical resources that can be used to 
improve the productivity, quality, and cost-effectiveness of 
manufacturing systems. Through the use of cyber-physical 
systems (CPSs), the continuing industrial revolution referred 
to as Industry 4.0 is significantly altering production 
processes. These networks allow for dynamic adaptability, 
operational optimization, and enhanced response to changes 
by fusing sophisticated computing technology with physical 
production processes.  

1) Digital Twins (DTs) 
A DT can take several forms and usually utilizes a 

combination of existing technologies, which differ from 
project to project [19]. Figure 3 shows the DT technologies, 
which include the following and discussed below: 

 

Fig. 3. Digital Twin Technologies 

• Digital Thread: The digital thread is particularly 
relevant to shop floor product development and 
manufacturing DTs. It provides the linkage and 
connectivity between systems and technologies that 
provide the data required by the DT. 

• Corporate Information Systems: Corporate data, 
especially that pertaining to manufacturing items, is 
frequently used by DTs and is typically found in some 
of the main business information systems. 

• Data Analytics/Artificial Intelligence: Data analytics 
is used in many DT initiatives to arrange and evaluate 
data in order to support DT output as well as operation 
[20]. DT analysis and reporting frequently make use of 
sophisticated business intelligence tools like Power BI, 
& AI applications may be created to improve system 
& product prediction, simulation, and visualization 
capabilities. 
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2) Cyber Physical Systems (CPSs) 
CPSs improve production systems' robustness, 

adaptability, and efficiency. The CPS is closely associated 
with a number of technologies, including cloud computing 
[21], IoT, wireless, and sensor networks. In Figure 4, the 
technologies used in the CPSs: 

 

Fig. 4. Cyber Physical Systems Technologies 

• Internet of Things (IoT): It involves interacting with 
smart systems via IP addresses. This allows an IP 
address to be assigned to any physical device. 

• Internet of Services (IoS): It encompasses novel 
communication formats like those provided by REST 
technology and service-oriented design (SOA).  

• Internet of Data (IoD): Large volumes of data may be 
efficiently sent and stored thanks to it, and creative 
analytical methods for doing so can be developed. 

3) Cloud and Edge Computing in Quality Management 
In recent years, the focus on smart manufacturing systems 

has been pushing the industry toward a new variety of highly 
advanced technical solutions [22]. In fact, smart 
manufacturing systems often incorporate smart quality 
management optimization capabilities to reduce time and cost 
in improving overall production efficiency through a 
technology-oriented approach, such as Industry 4.0. In Figure 
5, computing techniques for quality management are shown: 

 

Fig. 5. Computing Techniques used for Quality Management 

• Edge Computing: Edge computing revolutionizes the 
handling, processing, and use of data from different 
industrial sources. Edge computing technology has 
been increasingly popular in the industry recently [23]. 
The necessity for immediate decision-making, the 
expansion of IIoT-connected industrial resources, and 
the use of data analysis techniques requiring low-
power processing technology are the driving forces 
behind this decision. 

• Cloud Computing: In terms of data storage and 
processing power, cloud computing offers a great deal 
of flexibility. Some providers make services available 
through the pay-as-you-go formula, which lowers 
initial investments by providing precise billing based 
on the time and computational capacity needed [24].  
Easy-to-use services are made possible by cloud 
providers, who also manage hardware upkeep and 
provide intuitive graphical user interfaces.  The key to 

controlling workload peaks is the architecture's 
scalability, which is derived from the simplicity of 
expanding storage areas and changing components, 
even momentarily. 

IV. OPTIMIZING QUALITY IN SYSTEMS FOR WAREHOUSING 

A key element of the logistics sector, the warehouse stores 
items, supplies, raw materials, and completed goods across the 
supply chain [25]. For enterprises, it offers the capacity to 
store, maintain, and prepare items, guaranteeing a smooth 
supply of commodities on the basis of quantity as well as 
quality. Warehouses are essential for maintaining proper 
inventory levels, helping with product delivery, and efficiently 
managing logistics information systems [26]. The warehouse, 
a crucial component of business operations and the whole 
logistics system, receives and transmits vast volumes of 
knowledge and data to guarantee a seamless connection 
between the producer and the customer. 

A. Global Warehousing Forecasts  

The demand for eco-friendly logistics solutions is rising as 
conditions force extensive measures to lower waste 
production, natural resource usage, and global emissions [27]. 
The need for storage is estimated to increase by 7.2% per year 
worldwide, reaching a projected total value of $400 × 109 by 
2025. The industrial subsector's faster growth rate begs the 
question of whether the world is prepared to attain sustainable 
warehousing at the same rate. In order to do this, warehouses 
must implement best practices, low-impact environmental 
methods, and design approaches that lower waste and energy 
usage [28]. Adopting greener logistics framework initiatives 
as well as investigating logistics-related technologies which 
reduce carbon emissions and utilize more recyclable materials 
are essential for warehouses to achieve sustainable 
warehousing. 

 

Fig. 6. Connection of the temperature and humidity monitoring system 

• Temperature Controlled Warehouse’s Risk 
Management: A crucial phase in supply- chain risk 
administration is warehouses. One unique type of 
warehousing is cold chain storage systems. Cold 
storage improves the shelf life of fresh food items and 
temperature-sensitive medications whereas reducing 
disruptions within regulated temperature limits [29]. 
There are several dangers involved in the storage 
operation. Uncontrolled storage temperature has a 
direct impact on food nutritional value. The 
temperature plays a pivotal role in maintaining the 
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reliability and security of the goods [30]. Thus, it is 
very crucial to monitor and control the temperature of 
the food products throughout the entire cold chain. 

• Humidity Control Monitoring: During the 
temperature as well as humidity management 
procedures inside the storage experimental framework, 
the monitoring system examines the distribution 
features of air humidity and temperature [31]. As 
shown in Figure 6, the main components of the data 
collecting setup are the humidity and temperature of 
the air sensors, a wiring board, a hub, as well as a 
computer. The FLEX1100 sensor has the ability to 
look after the air temperature and humidity 
concurrently. It can measure temperatures ranging 
from -40 to +85°C with a precision of 0.3°C, while the 
humidity can be measured from 0% to 100%RH with 
a precision of ±2%RH. The sensor has a size of 90 mm 
x 47 mm.  

• Cross Contamination Control: Cross-contamination 
control can also occasionally be carried out under 
forced air flow circumstances, such as by drawing air 
through filter paper in a hoover filtering system for a 
predetermined amount of time [32]. This method uses 
a glass fibre filter paper with a 0.45 μm pore diameter 
and a 1-hour filtering period. 

B. Inventory Management in Warehousing 

The overall economy's growth is being significantly 
impacted by the present global financial crisis, creating 
hitherto unheard-of difficulties [33]. The movement of raw 
materials to final goods is optimized by supply chain (SC) 
inventory management [34]. Manufacturers, suppliers, 
distributors, importers, exporters, retailers, specialty stores, 
and service providers are all involved in Product SC. 

• RFID and Barcodes Systems: For many years, 
supply chain management (SCM) has employed 
barcoding, an advanced automated identification 
(auto-ID) technique [35]. It is often used in free 
governance, particularly in retail. Yet, radio frequency 
identification (RFID) has recently been regarded as a 
competitive technology that excels in both its non-line-
of-sight (nLoS) scanning capability and its capacity to 
store and update instantaneous information. 

• Blockchain Records for Tracking Provenance: As 
soon as fresh artworks are brought into the warehouse, 
their RFID tags are scanned, and the database is 
instantly updated [36]. The blockchain is the one that 
saves the verification results and drags the benefits of 
immutability, transparency, and an extremely high 
level of trust in the evaluation process. Data is 
collected nonstop and can be analyzed right away once 
a certain limit has been reached. The blockchain 
records all the actions-productions, lending of 
exhibitions, production, change of ownership and 
restoration.  

C. Smart Storage Systems 

Modern technology, warehouse procedures [37], and 
warehouse operations management now all depend on smart 
warehouses. The following viewpoints may be used to 
categorize the fundamental features of smart warehouses as 
shown in Figure 7: 

 

Fig. 7. The conceptual framework of a smart warehouse 

• Information Interconnection: The top-level 
architecture of smart warehouses incorporates 
information linkage. It is the cornerstone of operational 
management and smart warehousing. Information flow 
may be exchanged and processed by several logistics 
nodes, generating additional value thanks to 
technologies enabled by the Internet of Things (IoT), 
cyber-physical systems (CPS), and other emerging 
technologies. 

• Equipment Automation: The both tactical and 
strategic features of a smart warehouse are described 
by equipment automation. The smart warehouse's 
technical foundation is automation. Smart warehouses 
may attain substantial levels of automation in 
warehouse operations when they are provided with 
automated amenities [38]. While lowering the demand 
for physical labor, equipment automation can increase 
warehouse productivity. 

• Process Integration: Process integration serves as 
operational assistance within the framework and is a 
prerequisite for smart warehouse operations 
management. Process integration focuses on the new 
operational issues that arise in the administration of 
smart warehouses and attempts to establish overall 
planning among diverse warehouse activities. The 
prime aim of process integration is the killing of 
conflicts in harmonious understanding between 
warehouse owner-managers. 

• Environmental Sustainability: Smart warehouses 
primarily aim for environmental sustainability and this 
is furthered through integration of workflows and 
automation of equipment. The green development of 
smart warehouses is turning the spotlight on the issues 
of the environment such as carbon generation and 
energy consumption. In order to provide a sustainable 
roadmap for the warehouse department, the strategic, 
tactical, as well as operational management processes 
of smart warehouses should be implemented in an 
environmentally responsible manner. 

V. LITERATURE REVIEW 

This section reviews the existing literature on Quality 
Manufacturing in Storage Systems, concentrating on the 
service management, blending challenges, and security of the 
real-time manufacturing sources and systems for maintaining 
the performance of the system.  

Krishnakumar and R (2025) proposed system benefits 
greatly from the transfer learning paradigm since this 
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approach greatly cuts the computational cost and data demand 
compared with other approaches. The study looks at the 
generalizability of the system to other manufacturing domains 
and the inclusive applicability of the approach. This work 
details how computer vision and transfer learning is reshaping 
the manufacturing landscape today, and provides a basis for 
anticipating future trends in AOI [39]. 

Gowda et al. (2024) study presents a new framework that 
incorporates IIoT services for the enhancement of 
manufacturing processes and quality assurance. The key 
components include the use of real-time data capture, 
analyzing and decision supporting systems with the goal of 
enhancing production operations, reducing excessive time and 
decline in product quality. It also showed that the 
effectiveness in manufacturing and the establishment of 
quality control proved to be much effective in comparison to 
conventional procedures [40]. 

Yadla, Dcoutho and Kulkarni (2024) this research focuses 
on the development of Smart Manufacturing and Management 
System (SMMS) framework to address the manufacturing 
challenges in cable manufacturing, by acquiring 
manufacturing characteristics and converging to cyber 
systems for smart analytics interfacing physical machines, 
virtual systems, managers, and shop floor operators. The 
proposed SMMS has been implemented in cable 
manufacturing and it has shown the potential to reduce the 
manufacturing time to ∼20% and cost to AUD 180,000 per 
annum [41]. 

Zhang, Zou and Cheng (2024) in this industry background, 
the traditional witness method of equipment manufacturing 
supervision is not only inadequate, but also difficult to find 
problems and inefficient. Based on the witness of 
manufacturing supervision, laboratory sampling inspection 
and on-site inspection after equipment installation can more 
comprehensively find the quality defects of energy storage 
equipment in the process of manufacturing, transportation and 
installation, and ensure the safe and reliable operation of the 
equipment [42]. 

Zhang et al. (2023) in the equipment manufacturing 
process of the first 300MW level CAES demonstration 
project, the supervision system was optimized, the supervision 
content was added, new supervision strategies were proposed, 
and the beneficial impact on the factory quality of the 
equipment was discussed. Through two cases, it has been 
confirmed that the supervision system under the new model 
can meet the practical needs of CAES and effectively improve 
equipment quality. The optimization of the supervision system 
can also provide guidance for the quality control of other 
immature equipment [43]. 

Lyu (2023) in this paper, the hierarchy of technical 
architecture of intelligent manufacturing internal control 
system based on digital twin is defined. The construction 
mechanism of multi-level and multi-dimensional virtual 
workshop is put forward, and the basic unit model of multi-
dimensional fusion is described. A data architecture model of 
data collection, processing, storage and control driven by twin 
data is proposed. This research aims to provide some reference 
for the efficient development of internal control in the 
intelligent manufacturing process of manufacturing 
enterprises [44]. 

P and Nugraha (2022) study will focus on blockchain 
applied to traceability system as database technology because 
it can minimize the shortcomings of the database with 
conventional method. The results show that the data 
traceability system can trace procedures well and the data 
running well according to its function in storing data with 
blockchain. Based on these results, the traceability system in 
this study can trace procedures in achieving quality objectives 
in ISO 9001 [45]. 

Table I highlights recent studies on Quality Manufacturing 
in Storage Systems, focusing on the study motive, 
technologies involved in manufacturing products, 
contributions of the previous studies, benefits and the 
applications in quality management for the in the storage 
systems. 

TABLE I.  EXISTING LITERATURE OF RECENT STUDIES ON QUALITY MANUFACTURING IN STORAGE SYSTEMS 

Reference Study Focus Technology Key Contributions Improvements Reported Application 

Domain 

Krishnakumar 

& R (2025) 

Transfer learning for 

AOI and manufacturing 

generalization 

Computer Vision, 

Transfer Learning 

Demonstrated reduced data 

and computational 

requirements; explored cross-
domain generalizability 

Increased efficiency, 

lower computational cost, 

scalable AOI processes 

Automated Optical 

Inspection (AOI), 

general 
manufacturing 

Dankan 

Gowda et al. 

(2024) 

Enhancing 

manufacturing processes 

and QA using IIoT 
services 

IIoT, Real-time 

data capture, 

Decision support 
systems 

Developed framework 

integrating real-time 

monitoring and analytics 

Improved production 

efficiency, reduced time 

wastage, enhanced 
product quality vs. 

traditional methods 

General 

manufacturing and 

Quality Assurance 

Yadla, 
Dcoutho & 

Kulkarni 

(2024) 

Smart Manufacturing & 
Management System 

(SMMS) for cable 

manufacturing 

Cyber-physical 
systems, Smart 

analytics, SMMS 

Implemented SMMS 
integrating physical and virtual 

systems, operators, and 

managers 

Reduced manufacturing 
time by ~20%, cost 

savings of AUD 

180,000/year 

Cable manufacturing 

Zhang, Zou & 

Cheng (2024) 

Improving supervision 

in equipment 

manufacturing with 
inspections 

Laboratory 

sampling 

inspection, On-site 
inspection 

Proposed combined inspection 

approach to identify defects 

across manufacturing and 
installation stages 

Improved defect detection, 

enhanced reliability of 

energy storage equipment 

Energy storage 

equipment 

manufacturing & 
installation 

Zhang et al. 

(2023) 

Optimizing supervision 

system for CAES 

equipment 
manufacturing 

Supervision 

system 

optimization 

Added new strategies and 

content to supervision 

framework; validated 
improvements via two cases 

Improved equipment 

quality; provided guidance 

for quality control of 
emerging equipment 

CAES (Compressed 

Air Energy Storage) 

equipment 
manufacturing 

Lyu (2023) Internal control system 

architecture for 
intelligent 

Digital Twin, 

Multidimensional 
virtual workshop 

Proposed architecture for twin-

driven data collection, 
processing, and control 

Enhanced efficiency of 

internal control processes 

Intelligent 

manufacturing 
enterprises 



Dr. N. Jain, Journal of Global Research in Electronics and Communication, 1 (11) November 2025, 12-19 

© JGREC 2025, All Rights Reserved   18 

manufacturing using 
digital twin 

P & Nugraha 

(2022) 

Blockchain-based 

traceability system for 

quality management 

Blockchain Developed reliable traceability 

system meeting ISO 9001 

quality objectives 

Improved traceability 

accuracy; reduced 

limitations of conventional 
databases 

Quality 

management, 

Traceability systems 

VI. CONCLUSION AND FUTURE WORK 

Over time, manufacturing productivity and quality have 
grown due to the effects of the industrial revolutions on 
production processes. From the 1990s until the emergence of 
the fourth industrialization, or Industry 4.0, lean approaches 
drove the growth of production systems. The combination of 
emerging Industry 4.0 technologies and quality management 
practices of the highest standards is proven to be the key factor 
in bringing forth the performance improvements in 
manufacturing and warehousing. Using AI-based analytics, 
digital twins, cyber-physical systems, and cloud-edge 
computing technology, the companies can get to the point of 
having almost identical products, less defective units, and 
more operations flows that are not interrupted. In the case of 
warehouses, smart systems, automation, and environmental 
monitoring take the role of strengthening supply chain 
resilience and sustainability. The study reveals that the future 
of industrial excellence is built upon data-driven, 
interconnected, and adaptive systems that not only allow 
companies to be competitive but also support them in the 
process of complying with the enhanced requirements 
regarding efficiency, safety, and environmental impact. 

Future studies may focus on the mixing up of autonomous 
AI systems, sophisticated digital twins, and cloud-edge 
architectures, with the possibility of digitally enhanced 
forecasting and real-time decision management as the main 
area of study. Sustainability-oriented warehousing solutions 
will be extended and standardized throughout the industry, 
which will not only boost the effectiveness but also the 
resilience and eco-friendliness of the manufacturing and 
storage sectors of the next generation. 
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