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Abstract—A significant cause of death very early among
women is due to breast cancer. Since invasive ductal carcinoma
(IDC) and breast cancer in general continue to be among the
most common and fatal illnesses affecting women, prompt
identification is crucial. Convolutional neural networks (CNNs),
in particular, are particularly notable in automating image
processing of breast cancer to the point that the images do not
need human interpretation. The proposed project enhances the
detection of IDC by creating a reliable diagnostic algorithm, in
which deep learning and histopathology images analysis are
used. On a large-scale dataset of IDCs containing more than
277,000 image patches, it applied a full preprocessing pipeline,
including Otsu thresholding, tissue masking, Hematoxylin
channel extraction, CLAHE enhancement, Gaussian denoising
and gamma correction to improve image quality. Images with
low tissue content were eliminated and SMOTE has been
utilized to work on the imbalance of classes. This was a fully
fine-tuned ResNetS0V2 that was pretrained on ImageNet, and
then combined with own dense layers and trained based on
Adam optimizer and binary classification. Accuracy (acc) of the
model was 88.52%, and precision (pre), recall (rec), and F1-
score (F1) were greater than 88%. The effect of various
architectural and training setups was studied using ablation and
confirmed the efficiency of the chosen model. The comparative
analysis yielded better performance in comparison to the
existing CNN, CNN-GRU, and DenseNet-based models. The
results indicate the possibility of Al-based breast cancer
detection to be used in clinical practice, decrease errors in
diagnosis, and increase the rate of early diagnoses. Combined
application of the state-of-the-art image enhancement, balanced
data depiction, and comprehensive study of the ablation using
pre-trained CNN models is novel. This adds a high-performing
and interpretable, yet clinically relevant, solution to the early
diagnosis of breast cancer by using histopathology.

Keywords—Breast Cancer, Invasive Ductal Carcinoma, Deep
Learning, CNN, ResNet50V2, Histopathology, Image
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I. INTRODUCTION

Cancer is a global disease that impacts people of all ages
and socioeconomic backgrounds [1]. Breast cancer is among
the most prevalent cancers in women, despite the fact that
there are many different kinds of the disease. The primary
cause of mortality for female cancer patients globally is breast
cancer. Numerous women are impacted by this serious global
issue because to its high frequency and deadly nature. The
most common disease, making up over 14% of all
malignancies, is breast cancer, which has significant rates of
death and morbidity among women globally [2][3]. It affects
around 2.1 million women annually and raises their death rate.
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Estimates for 2020 put the death toll from breast cancer at
6,855,000 women. As the most common method for
diagnosing breast cancer, the histopathological examination,
breast cancer stands out among the many types of cancer due
to its high mortality rate and provide that it is the most
prevalent kind of cancer in women globally [4].

IDC is the most common kind of breast cancer that
develops when the breast is invaded by ductal carcinoma.
Cancer can take many distinct forms. IDC begins in the milky
ducts of the breast and accounts for around 80% of all cases
of breast cancer [5]. The IDC has the capacity to spread to
other areas of the body after infecting lymph nodes.
Traditional diagnostic approaches rely heavily on
histopathological analysis, where expert pathologists
manually examine tissue samples under a microscope.
Histopathological images, which are used for disease inquiry
and are microscopic pictures of tissues, are the gold standard
when it comes to cancer diagnosis. These pictures provide
important and useful information that medical professionals
may thoroughly examine to determine the patient's current
condition. Histopathology images were hard to find and
obtain until recently, and the scientific community could not
access them [6]. Consequently, the majority of histopathology
image studies, particularly those involving breast cancer
images, were conducted on very limited datasets. Despite its
status as the gold standard, this method is laborious, expert-
only, and susceptible to inter-observer variability. To reduce
diagnostic delays and improve consistency, Al has become a
viable option for illness diagnosis and medical imaging [7].

Software that is backed by Alis necessary for
identification of breast cancer to reduce the workload for
qualified medical personnel and avoid misinterpretation. This
problem remains unsolved in the present state of Al-supported
breast cancer diagnostic systems [8]. The use of ML
approaches for breast cancer categorization has received a lot
of attention within the Al sector. However, the conventional
ML techniques tend to rely on manually created features and
domain-specific knowledge and this restricts their scalability
and versatility across datasets [9]. Such techniques are also not
effective when the image is complex and when there are
differences in morphology of tissues as is the case in
histopathological images. To address the above challenges,
scholars have resorted to DL, which is an enhanced section of
ML that allows automatic feature extraction and direct
representation learning directly on raw images [10]. One
technique of ML is referred to as DL and it utilizes neural
networks. The neurons in each layer are connected to the other
by weighted connections as the intricate structure of the DL



Choudhary and Sharma, Journal of Global Research in Electronics and Communication, 1 (12) December 2025, 01-12

networks involves more than one layer [11]. To speed up these
procedures and improve diagnostic accuracy, researchers have
put forth a variety of DL models for the detection and
classification of breast cancer. The application of DL
techniques and CNNs in particular has transformed the
medical analysis of images by representing the hierarchies of
data space and enhancing the level of accuracy in
classification. The annotated datasets and high computational
resources required to train deep CNN's are however not always
available in the medical domain [12]. Enhancing pre-trained
models on a big dataset (like ImageNet) for specific objectives
like breast cancer classification has been a well-liked remedy
for this problem. The approach improves the generalization of
models on small medical data but also accelerates the training
[13]. In the study, it uses a DL-based CNN architecture that
uses an already-trained transfer learning model with several
parameter adjustments to enhance the categorization of
images of histological breast cancer.

A. Motivation and Contributions

Breast cancer, especially IDC is a major health problem
which needs early and precise diagnosis to be treated.
Analysis of histopathological images is a tedious task that is
prone to diagnostic errors. The necessity to identify IDC, the
most common type of breast cancer, with high precision and
promptness is a motivated cause of the research because it
significantly increases the outcomes of treatment and survival
rates. Traditional methods of diagnosis, such as manual
review of histopathology slides, are tedious, subjective, and
prone to human error. As more and more data is available on
digital pathology platforms, and companies turn to deep
learning, the future of automated, objective, and highly
accurate diagnostic tools can be hoped. By utilizing
convolutional neural networks and, in particular, pre-trained
ones, it is possible to extract meaningful features out of
complex histopathological images and help the pathologists
arrive at a faster and more accurate conclusion. The study in
question utilizes such Al capabilities to improve the accuracy
of diagnostics, cut down on the workload, and play a role in
more effective screening and diagnostics of breast cancer.

B. Contributions and Significance of the Study

The general objective of the research is to assist in early
diagnosis and also improve clinical decision-making through
the development of a valid and automated DL-based approach
that is capable of detecting IDC in breast histopathology
images. The key contributions are as:

e This paper presents a new and domain-specific
preprocessing  pipeline  that is  specific to
histopathological breast tissue images. It combines the
pipeline, CLAHE, and denoising which leads to
quality image input that can increase the visibility of
features and model interpretability.

e The research uses SMOTE to overcome Class
imbalance is a prevalent issue in medical datasets. This
guarantees the equal representation of IDC-positive
and IDC-negative classes, which is important to reduce
the model bias and guarantee the high level of
classification.

e The main finding is that the ResNet50V2 model that
was originally trained on ImageNet was adapted and
optimally fine-tuned to IDC in breast histopathology
images. The paper has shown that even general-
purpose CNNs can be highly accurate in classifying
medical images with an appropriate choice of tunings.
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e The proposed design incorporates a simplified
classification head to the ResNet backbone layers. The
design has low chances of overfitting and good
learning ability; thus it is applicable in large-scale
medical imaging with limited computation
capabilities.

e Model performance is completely justified with a set
of diagnostic measures such as the Confusion Matrix,
Flscore, ROCAUC, rec, acc, and pre. This is a multi-
level assessment which ensures that the model is
transparent and reliable in the decision making of a real
diagnostic scenario.

The research is also important in medical imaging and
cancer diagnosis because it provides a robust, automated
system for detecting IDC in histopathology images. Early and
correct diagnosis of breast cancer is linked to better patient
outcomes and efficient treatment; however, manual analysis
of the data (involving pathologists) can be tedious, subjective,
and subject to mistakes. Combining innovative image
processing methods with DL, the work helps increase
diagnostic accuracy, reduce human input, and facilitate
clinical decision-making. In addition, the method is scalable
and can be applied to other medical imaging tasks, using
publicly available data and methods that can be reproduced,
thereby enabling the development of Al-assisted healthcare
solutions.

C. Novelty and Justification

The research presents a novel framework of IDC breast
cancer detection by using the power of CNN-trained models
alongside sophisticated image processing and data balancing.
In contrast to the other methods, which usually ignore the
effect of low tissue quality or use custom CNNs, this paper
specifically ~ combines  high-performing  pre-trained
convolutional networks with fine-tuning to that particular
task, i.e., histopathological analysis. Balanced distribution of
classes is guaranteed during the use of SMOTE and this
increases the robustness of the model and minimizes
prediction bias. One of the novelties is also the consideration
of a detailed ablation study where every preprocessing method
and model architecture is studied in detail. This thorough
analysis gives an important rationale to the design decisions,
giving openness and understanding of the role played by each
component in the performance of the model. This work is a
unique and worthy addition to automated breast cancer
diagnosis due to the combined efforts of high-quality image
processing, pre-trained CNN models and empirical validation.

D. Organization of the Paper

This paper is organized as follows: Related work and
current issues are covered in Section II. Section III explains
the dataset, preprocessing techniques, and proposed
ResNet50V2 model architecture. Experimental findings,
assessment criteria, and comparative analysis are presented in
Section IV. Section V discusses the findings and what they
mean for future research.

II. LITERATURE REVIEW

The section provides a review of previous research
concerning the use of breast cancer prediction with the help of
ML and DL models, where high accuracy was achieved on
structured data, with some focus on the histopathology images
and sophisticated DL architectures.
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Kaur and Madaan (2024) use the available methods and
determine some of the risk factors that lead to breast cancer.
Breast cancer risk analysis may be anticipated using machine
learning techniques. The approach involves gathering a
dataset of patients, pre-processing the dataset to eliminate
unnecessary information and reduce dimensionality,
normalizing features, and dividing the dataset into training and
testing sets. For breast cancer therapy to be successful, early
diagnosis is crucial. The proposed work's effectiveness is
assessed and validated using the Breast Cancer Surveillance
Consortium Dataset. RF exhibited the highest accuracy of
75.2% [14].

Arachchi et al. (2024) early detection of Breast Cancer is
essential, and many lives can be spared with effective
treatment. The WBCD dataset data was examined and utilized
in several ML models. SVM, KNN, Naive Bias model,
Logistic Regression (LR), AdoBoost and DT were used for
prediction. This paper covers the findings and evaluations of
many ML models for Breast Cancer detection. Comparing the
results reveals that the AdoBoost model yields the best
outcomes. 96% accuracy and logistic regression model is
predicted 96% of ROC value. Logistic regression model and
AdoBoost, which is better than the previously published
approach [15].

Kaur and Gupta (2024) employ Random Forest and DT
approaches to use the Breast Cancer Wisconsin data to
increase the accuracy of breast cancer diagnoses. These
methods investigate thirty features taken from digital images
of tiny needle aspirates in order to obtain minute cell nuclei
properties. After data collecting, analysis, visualization, and
model deployment follows hyperparameter tuning via
GridsearchCV. Although the RFC had remarkable accuracy
of 93%, indicating resilience in managing complex data, the
Decision Tree classifier resulted in 91% accuracy. These
results show how well ML techniques might be applied to
enhance the diagnosis of breast cancer, therefore providing
doctors more precise tools for early identification and better
patient treatment [16].

Singh and Kaswan (2024) proposed method in their
research are the use of a soft voting classifier for automatic
assessment of malignancy or benignancy of breast cancer
using three ML algorithms: LR, SVM, and DT. The suggested
method is tested and evaluated using the 699-item Breast
Cancer Wisconsin dataset (Original). The data is balanced
using the random oversampling method to minimize the bias.
The methodology that is proposed, gives 0.9708 accuracy,
0.9821 precision, 0.9483 recall, and an F1score of 0.9649 with
an AUC of 0.9678 [17].

Alsabry et al. (2023) using SMOTE to fix the dataset's
imbalanced target class is the goal of improving BC prediction
models. The models are evaluated using two methods: the first
makes use of the first, which uses SMOTE to balance the
target class in the Breast Cancer Coimbra Dataset (BCCD).
The comparison of the two methods' performance shows that
using SMOTE considerably enhances the BC prediction
models' performance. The Optimized Logit Boost model
achieved a 73.9% accuracy rate with SMOTE, whereas
AdaBoost with Bayesian Optimization attained a 52.2%
accuracy rate. Without SMOTE, the model obtained a rate of
76% [18].

A’la et al. (2023) results in just a tiny fraction of the
imbalance dataset being present in the coimbra breast cancer
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dataset. Nevertheless, this might be problematic for building
ML models, since the resulting model can favor the majority
and under-predict the minority. This study employs SMOTE
in an effort to reduce the class imbalance. Following the
SMOTE implementation, a 10-fold cross-validation ML
model is constructed using the RF technique. The model is
then evaluated for acc, pre, and rec. Results demonstrate an
improvement in model acc (from 76.72% to 80.47%), pre
(from 76.60% to 80.00%), and rec (from 69.23% to 81.25%)
[19].

Anklesaria et al. (2022) sought to integrate various ML
algorithms with hyperparameter tweaking that pick features
using the RF Feature Importance Method, include ANN, DT,
RF, KNN, SVM, LR, and NB. These models were trained
using the WDBC dataset, which stands for the Wisconsin
Diagnostic Breast Cancer. Additionally, they found that
Undersampling produced a superior overall outcome after
balancing the dataset using both SMOTE and Undersampling.
Specificity, accuracy, sensitivity, Flscore, precision, recall,
and AUC are performance assessment criteria for the
developed model. According to the results, the two most
successful models that fitted their dataset were KNN (95.3%
accuracy) and SVM Algorithm (95.8% accuracy) [20].

Behera et al. (2022) utilized five distinct ML algorithms
on the BC dataset: KNN, SVM, DT, RF, and LSTM.
Confusion matrices, precision, F1 scores, recall, and accuracy
used to compare the results obtained by the LSTM classifier
to those of the KNN, SVM, RF, and DT classifiers. This
study's main objective is to identify the best ML algorithm for
breast cancer prediction. The LSTM algorithm has the highest
accuracy of 96%, as it is demonstrated to be superior to all the
other algorithms under review [21].

Ara, Das and Dey (2021) The study made use of the
Wisconsin Breast Cancer Dataset, which was accessible via
the UCI repository. Through data analysis, this study
evaluates how well a number of machine learning algorithms
predict breast cancer. Here, SVM, LR, DT, KNN, NB, and RF
are used as classifiers in determining if a tumor is benign or
malignant. The most suitable algorithm is selected by
computing and comparing the accuracy of each of the
algorithms. The analysis indicates that RF and SVM are
superior to other classifiers with a 96.5 percent accuracy level.
These classifiers can be applied to develop an automated
system of preliminaries of breast cancer [22].

Karatza et al. (2021) used Al techniques such as RF, NN,
and ENN to attain this goal. They offered descriptions and
optimization of their behavior, and interpretability, such as
Shapley Values (SV), Individual Conditional Expectation
(ICE) plots, and the Global Surrogate (GS) approach. The Al
algorithms were trained and tested using the WDBC data set
from the public UCI repository. The suggested ENN
performed best in diagnosing breast cancer, with an acc of
96.6% and an area under the ROC curve of 0.96. By
decreasing the AUROC curve to 0.97 and the accuracy of RF,
which was 96.49%, to 97.18%, the RF performed better when
the features were chosen based on their relevance as
determined by the GS model. In addition, feature selection
based on the features' relevance as assessed by SV improved
the NN's performance (resulting to an increase in accuracy
from 94.6% to 95.53% and an AUROC curve from 0.94 to
0.95) [23].
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The comparative study of previous research on DL models
for breast cancer diagnosis is shown in Table I.

TABLE I. COMPARATIVE ANALYSIS OF EXISTING WORK ON DEEP LEARNING MODELS FOR BREAST CANCER DETECTION

References Methodology Dataset Result Advantages Limitations Recommendations
Kaur and | ML with feature | Breast Cancer | Random Forest: | Integratesrisk factors | Accuracy lower | Explore ensemble DL
Madaan (2024) | extraction, Surveillance 75.2% accuracy with ML; real-world | than 80%; lacks | models and additional

normalization, RF Consortium dataset deep learning biomarkers
(BCSC)
Arachchi et al. | SVM, KNN, Naive | WBCD AdaBoost:  96%, | Multiple models | Small dataset; no | Use larger datasets, test
(2024) Bayes, LR, | (Wisconsin) LR: 96% ROC compared,; strong | feature selection | robustness with noise
AdaBoost, DT ensemble results mentioned
Kaur and Gupta | Random Forest, | WBCD RF: 93%, DT: | Hyperparameter Doesn't compare | Include CNN/LSTM or
(2024) Decision Tree + 91% tuning; good visual | with DL models hybrid ensemble
GridSearchCV analysis comparisons
Singh and | Soft Voting Classifier | WBCD Accuracy: Combines classifiers; | Dataset size is | Try SMOTE-ENN and
Kaswan (2024) | (LR + SVM + DT) (Original) 97.08%,  AUC: | handles imbalance | small; potential | feature reduction
0.9678 with oversampling overfitting techniques
Alsabry et al. | Multiple tree & SVM | BCCD Best: Logit Boost | Detailed = SMOTE | Low accuracy on | Explore deep networks
(2023) models + SMOTE (Coimbra) (88%), others | impact; many | small models; | and domain
<85% algorithms imbalance issues knowledge-driven
features
A’la et al. | Random Forest + 10- | Coimbra Dataset | Before SMOTE: | Boost in precision, | Still moderate | Combine SMOTE with
(2023) fold CV + SMOTE 76.72%,  After: | recall with SMOTE performance ensemble learning for
80.47% (<85%) robustness
Anklesaria et | SVM, LR, KNN, DT, | WDBC Best: SVM: | Feature importance | Focus only on | Apply temporal/deep
al. (2022) RF, ANN, NB + 95.8%, KNN: | analysis; WDBC; no time- | learning on sequence
Feature Selection 95.3% comparative study series methods data
Behera et al. | KNN, SVM, DT, RF, | BC Dataset Best: LSTM: 96% | First use of LSTM; | Details on dataset | Benchmark LSTM on
(2022) LST™M compares with | and preprocessing | other datasets like
traditional ML unclear BCSC, BCCD
Ara, Das and | SVM, LR, KNN, DT, | WBCD (UCI) RF, SVM: 96.5% Simple comparison; | No use of | Consider imbalanced
Dey (2021) RF, NB clear  performance | balancing or | dataset handling
metrics advanced (SMOTE)
preprocessing
Karatza et al. | RF, NN, Ensembles + | WDBC (UCI) ENN: 96.6%, RF: | Interpretability + | Needs more | Apply models to real-
(2021) SHAP, ICE, 97.18% Performance; use of | external world/clinical datasets
Surrogate Models SHAP validation (BCSC)

A. Research Gaps

Several research gaps exist in breast cancer prediction
despite significant advancements using ML and DL
techniques. Current studies have demonstrated promising
accuracy using models like SVM, RF, ANN, and ensemble
classifiers on structured datasets like WBCD and BCCD.
However, limited work has explored high-resolution
histopathological image data using advanced CNN
architectures. Moreover, class imbalance issues are often
under-addressed, and many approaches lack comprehensive
preprocessing pipelines. The integration of deep learning with
optimized preprocessing and SMOTE-based balancing for
IDC detection remains underexplored, particularly in real-
world clinical image datasets like the Breast Histopathology
Images dataset.

III. METHODOLOGY

The suggested approach for detecting IDC breast cancer
using the Breast Histopathology Images collection is detailed
in this section. This approach describes the use of the Breast
Histopathology Images collection for IDC breast cancer
identification. After collecting data from Kaggle, exploratory
analysis identifies class imbalance. Preprocessing, image
enhancement, and balances the dataset is then separated into
three categories: validation, testing, and training. Labels are
one-hot encoded for binary classification. A ResNet50V2
model is evaluated for its performance in using the Flscore,
recall, accuracy, and precision for feature extraction and
categorization. This entire process is shown in Figure 1.
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[ Categorical Encoding

Evaluation Metrics:
Accuracy, Precision,
Recall, F1-Score

Ablation Study ’

Fig. 1. Data Flow Diagram

Classification Model:
ResNet50V2

The stages of the suggested technique flowchart 1 are
described in short below:
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A. Data Collection

The "Breast Histopathology Images" dataset, which
focusses on IDC, Kaggle provided the most prevalent subtype
of breast cancer, which was used in this study. The breast
cancer histopathology pictures in the IDC collection are built
up as patches with dimensions of 50 x 50 pixels. With these
patches, it may find both IDC positive and negative images.
There are 277,524 photos in total, of which 78,786 are IDC
positive and 198,738 are IDC negative. Each of these patches
has a Magnification Factor of 40x. This research uses a subset
of the IDC dataset. Figure 2 displays the example photos from
the Breast Histopathology images collection.

S B - SR ;
2 N

Fig. 2. Sample Images of Breast Histopathology Images dataset

B. Exploratory Data Analysis (EDA)

The Breast Histopathology Images dataset for IDC
classification was well explored with exploratory data
analysis (EDA). First, it was found that the dataset provided a
major imbalance between the Positive and Negative images of
IDC, as indicated in Figure 3. A rich preprocessing pipeline
was carried out in order to improve data quality, as shown in
Figure 4, where data was resized, then masked for tissues,
stains were extracted, followed by contrast and noise post-
processing. Figure 5 presents some of the outputs of the pre-
processed images, which are clear and consistent enough to be
used as model input. Lastly, Figure 6 shows the SMOTE
effect, which balances the classes, solving the data imbalance
issue to train a better model.

Distribution of IDC Positive vs IDC Negative Breast Cancer Images

200k 198733 Class Label
M IDC Negative (Healthy Tissuc)
W 1DC Pesitive (Invasiv ww;v Carcinoma)

Number of Images

IDC Negative (Healthy Tissue) IDC positive (Invasive Ductal Carcinoma)

Class Label

Fig. 3. Distribution of IDC Positive vs IDC Negative Breast Cancer Images

The class distribution of the Breast Histopathology Images
dataset for IDC classification is shown in Figure 3. It reveals
a significant imbalance, with 198,738 images labeled as IDC
Negative (healthy tissue) and only 78,786 images labeled as
IDC Positive (invasive ductal carcinoma). This disparity
highlights a common challenge in medical image
classification tasks class imbalance, which can affect model
performance and bias predictions. To overcome this
imbalance through such techniques as SMOTE is critical to
achieve robust and fair classification in Breast Cancer
detection systems.

( &) Denoisc Image () Gamma Corrected Image (g) Gray to RGB Image

(d) CLAHE Image

Fig. 4. Preprocessing Stages for Breast

Enhancement

Histopathology  Image
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The steps of sequential preprocessing of breast cancer
histological pictures shown in Figure 4. It starts with resizing
(a), masking tissues (b) to isolate regions of interest and
extraction of the Hematoxylin stain (c). CLAHE (d) is used to
enhance contrast and denoising (¢) is used to reduce noise.
Photo-adjustment (f) enhances brightness and contrast with
gamma correction and the resulting (g) is translated into the
RGB format that is uniform to input the ResNet50V2
classification model.

Fig. 5. Sample Output of Preprocessed Histopathology Images Used for
IDC Classification

Five sample histopathology image patches, as a result of
the full preprocessing pipeline, are shown in Figure 5. Every
processed image demonstrates a signal increase in contrast
and better cellular structures, which allow better feature
extraction. These are high clarity, standardized images, which
are fed to the CNN model to provide homogenous information
representation when performing IDC classification.

C. Data Preprocessing

Deep learning methods use histopathology images as
inputs, thus preprocessing is essential in ensuring that the
images can be used in such models, as well as, extracting the
best out of the models in terms of image quality, variety, and
accuracy [24]. The preprocessing involves seven major
processes namely: image resizing, tissue masking,
hematoxylin imaging, CLAHE imaging, Denoised Imaging,
Gama Corrected Images, Grey to RGB Images.

e Image Resizing: Image patches of all the
histopathology are resized to 124x124 pixels to
normalize the input size of the model.

o Tissue Masking: Background Masking is the method
used to isolate tissue regions by threshold-based
masking to isolate only the tissue.

e Hematoxylin Imaging: The Hematoxylin channel is
removed to highlight the structures of nuclei by using
color deconvolution.

e CLAHE Imaging: A method called Contrast Limited
Adaptive Histogram equalization may boost local
contrast and highlight features.

e Denoised Imaging: Denoised Imaging removes
artifacts and background noise to enhance clarity of
cellular structures in images.

e Gamma Corrected Images: Brightness and contrast
are adjusted via gamma correction for better image
normalization.

e Gray to RGB Images: Processed grayscale images
are converted back to RGB format for compatibility
with CNN models.

D. Applying SMOTE

The Python scikit-learn module was used to implement the
SMOTE, which was aimed at addressing the class imbalance
[25]. To balance the dataset used to train the algorithms, it
creates artificial samples of the minority class. A balanced
dataset with 140,463 images in each class (IDC Negative and
IDC Positive) is displayed in the output following the
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application of the SMOTE technique. To ensure consistent
input dimensions for DL model training, the image and label
arrays are appropriately reshaped.

Distribution of IDC Positive vs IDC Negative Breast Cancer Images After SMOTE

140k Class

m
120k

100k

1DC Nagative (Haalthy Tissue) 1DC Positive (Invasive Ductal Cardinoma)

Class Label

Fig. 6. Class Distribution of IDC Positive and Negative Samples After
SMOTE Balancing Technique

The class distribution of IDC positive and IDC negative
breast cancer images after applying the SMOTE method as
shown in Figure 6. The graph shows that the two classes have
been equalized to around 140,000 samples apiece, correcting
the previous disproportion in the classes. This balanced
dataset allows all the classes to get equal representation in the
deep learning model so that it is better at generalizing, less
biased to the majority class and better at classification used in
detecting IDC.

E. Data Splitting

To guarantee that the DL models are completely trained,
validated, and tested, Training, validation, and test sets are the
three divisions of the dataset[24]. The dataset, consisting of
280,926 images after the application of SMOTE, is divided
into three subsets by an 80-10-10 ratio: 80% (224,740 images)
to be used in the model training, 10% (28,093 images) to
validate the hyperparameters and track the overfitting, and
10% (28,093 images) to be used in the final test. This split
ensures effective model learning, evaluation, and
generalization on unseen breast cancer histopathology images.

F. Categorical Encoding

A collection of finite and collected categories with
components that are mutually exclusive determines how
categorical variables are encoded. A CNN input picture for
each subclass is represented by a numerical value vector [26].
A two-dimensional vector representing each label is used to
correspond to the two classes: IDC Negative and IDC
Positive, enabling compatibility with the binary classification
output layer in the neural network. This transformation was
performed on all three datasets, training, validation, and test—
resulting in label shapes (224740, 2) for training, preparing the
data for the SoftMax-style classification layer of the deep
learning model.

G. Classification Model for Breast Cancer

This section discusses the analysis and classification of DL
model ResNet50V2 that explained in below:

1) ResNet50V2

CNN with outstanding performance across a range of
computer vision applications is ResNet50V2. The
deterioration issue in deep networks is addressed by this
variation of the ResNet design, which employs skip
connections. The 50-layer ResNet50V2 was pre-trained using
ImageNet and other large-scale image datasets [27]. The
network is able to learn residual mappings and deeper models
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may be trained with the help of residual blocks. Another
manner in which skip connections enhance training is by
enabling the direct passage of gradients from earlier to later
layers. Because of its feature extraction capabilities, the
ResNet50V2architecture finds use in breast cancer detection,
particularly in cases where the patterns are complex and
hierarchical. Deep layers in ResNet50V2 learn abstract
representations of breast tissue textures, forms, and features
that are critical for malignant vs benign tissue classification.
The benefit of transfer learning (TL) is brought about by using
the pre-trained ResNet50V2 model, which has learnt generic
characteristics from a large-scale image dataset like
ImageNet. ResNet50V2 is able to obtain broad image
representations by pre-training, which may then be refined for
the diagnosis of breast cancer. The Breast Cancer detection
system may benefit from the taught features from
ResNet50V2 in terms of both accuracy and functionality.
ResNet50V2 adopts a modified residual block with pre-
activation. The residual mapping is defined as Equation (1):

y =x + F(ReLU(BN(x)))),{W} (1)

Where, x = input to the residual block, y= output of the
block, BN ()= batch normalization, ReLU(-)= activation
function, F () = series of convolutions with weights {W}. This
equation reflects the pre-activation structure of ResNet50V2,
where normalization and activation precede the convolutional
operations within the residual path.

Input Layer: 124x124x3

ResNet50V2 - Pretrained

GlobalAveragePooling2D

Dense Layer: 256 units, RelLU

Dense Layer: 128 units, RelLU

Output Lavyer: 2 units, Sigmoid

Fig. 7. Architecture of ResNet50V2 Model

The architecture of the suggested DL model for IDC
Breast Cancer classification, which is based on ResNet50V2,
is displayed in Figure 7. The ResNet50V2-based model
utilizes a robust transfer learning strategy to classify
histopathology image patches into IDC-positive (cancerous)
or IDC-negative (non-cancerous) categories. The input layer
processes RGB images resized from 50x50 to 124x124x3 to
match the expected dimensions of the pretrained model.
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The ResNet50V2 architecture imported in include
top=false with ImageNet weights initialized is a potent feature
extractor that is optimized for medical imaging. This is
followed by GlobalAveragePooling2D layer that summarizes
spatial information without cutting the most prominent
features, which decreases the occurrence of overfitting
relative to flattening techniques. The resulting features are
then run through two fully connected layers, the first layer
being a Dense layer of 256 and ReL.U-activated units to refine
complex features and followed by the second layer of a Dense
layer of 128 and ReLU-activated units to refine the high-level
features. The last layer is the Dense (2, activation='sigmoid’)
which does binary classification by returning the class
probability of IDC and non-IDC. This model can be adjusted
to histopathology data because ResNet50V2 base is set to be
trainable which is essential. An Adam optimizer with a binary
cross-entropy loss and a learning rate of 0.0001 is used to build
the model. In binary classification issues (such as IDC vs.
non-IDC in breast cancer diagnosis), binary cross-entropy is a
frequently used loss function. The objective is to divide the
data into two distinct categories. It compares a discrepancy
between true labels (y) and model predictions (7). The binary
cross-entropy loss of binary classification problems is defined
by Equation (2):

L=—~3 . log(®) + (1= y).log (1= 5)) (2)
Where:

e N = Total number of samples

e 1y :true label (0 or 1).

e ¥;: Forecasted probability of the +ve class (0 < ¥;).
¢ log = Natural logarithm

The training is performed with a Batch Size of 32 and 10
epochs, with an independent validation set to measure the
performance of generalization. The parameters like accuracy
and loss are tracked throughout the stages of training and
validation to make sure the model converges as much as
possible and is discriminative in the identification of breast
cancer.

The research analyzed the ResNet50V2 model's ability to
classify breast histopathology pictures in binary using a
variety of training and architectural changes. In the case of
removing the Dense (128) layer, the model demonstrated a
reduction in its accuracy, which shows that this layer, which
is fully connected, is a critical component of acquiring high-
level features of cancerous tissue. Making the Global Max
Pooling instead of Global Average Pooling also resulted in
greater sensitivity to dominant features at the expense of
generalization, with a further risk of overfitting. Replacing the
optimizer with Adam with SGD, instead of making the
optimization process faster, led to worse final accuracy, which
suggests that SGD with a fixed learning rate and nonadaptive
momentum discourages the optimal weight changes in this
medical imaging example. Lastly, the application of
categorical cross-entropy instead of a sigmoid cross-entropy
on the output layer, with the use of only the rather erratic
performance on binary classification, was brought on by a
SoftMax function, which performs poorly with two-class
probabilities. These findings collectively emphasize the
critical roles of the Dense (128) layer, Global Average
Pooling, adaptive optimizers like Adam, and the sigmoid
activation function in achieving optimal classification
performance with the ResNet50V2 backbone.
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H. Model Evaluation

An important part of creating a successful deep learning
model is model evaluation. The performance of the trained
model is evaluated by applying it to the test photographs for
classification after image pre-processing, training, and
validation. Many metrics are used for assessment, including
the area under the ROC curve (AUC), the ROC, cross-
validation, and the confusion matrix. Commonly utilized to
construct evaluation metrics are the following concepts in
confusion metrics: true negative (TN), i.e., the classifier's
prediction and the test instances were both negative; true
positive (TP), i.e., the results of the test cases and the
classifier's prediction were both positive; false negative (FN),
i.e., the classifier forecast a negative result even if the test
examples were positive; and lastly, false positive (FP), i.e., the
results of the tests were negative, yet the forecast came out
positive[28]. The model's classification performance is
frequently assessed using the confusion matrix's accuracy,
pre, rec, and F1. These measures are briefly summarized in the
next paragraphs.

1) Accuracy

The accuracy score of the computation of a model involves
dividing the total number of forecasts by the proportion of
accurate predictions. It only shows the predictions for normal
patients and the diagnoses for abnormal breast cancer patients
as a percentage. Equation (3) provides a definition for the
accuracy.

TruePositive+TrueNegative
Total

Accuracy = 3)
2) Precision
The true positive results, including those that the classifier
misidentified, are divided by the actual positive results to
calculate precision. Equation (4) may be used to express
precision.
TruePositive

Precision = — — 4)
TruePositive+FalsePositive

3) Recall

The ratio of TP findings to TP samples that ought to have
been identified is the measure of rec. Both rec and pre should
be good when diagnosing medical images after decreasing the
number of patients who are misdiagnosed as malignant.
Equation (5) may be used to calculate the rec.

TruePositive

Recall = — . (5)
TruePositive+FalseNegative
4) Fl-Score

The F1-score is a measure of the acc of each class's model.
When the dataset is unbalanced, the F1measure is often used.
Comparing two models with high Sn and low Pre is helpful.

Equation (6) may be used to define it.

precisionXrecall

F1 — Score =2 X 6)

precision+recall

5) ROC AUC

The ROC curve visually represents performance across
thresholds, with AUC providing a summary of the model's
class-distinction capabilities.

1L Algorithm: IDC Breast Cancer Classification

Input: Breast Histopathology Images Dataset (Kaggle)
Output: Trained ResNetS0V2 model capable of classifying IDC and non-
IDC patches.

| 1. Import Libraries:
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0] Import Python libraries:
OpenCV, Seaborn, and PIL.

O  Import TensorFlow and Keras modules (e.g.,
tensorflow.keras, Image Data Generator).

O Import imblearn for SMOTE.

O Import sklearn metrics and preprocessing tools.

| 2. Load Dataset:

O Download and extract the Breast Histopathology
Images dataset from Kaggle.

O  Load image patches (50x50) and their labels (IDC
positive = 1, IDC negative = 0).

O  Visualize sample patches and class distribution.

| 3.  Exploratory Data Analysis (EDA):

O  Analyze class imbalance.

O  Visualize IDC-positive vs. IDC-negative patch
counts.

O  Plot sample tissue images and perform pixel
distribution analysis.

| 4. Data Preprocessing:

O  Resize all patches to 124x124 pixels.

Apply tissue masking to remove background.

Extract hematoxylin stain via color deconvolution.

Apply CLAHE for local contrast enhancement.

Denoise images to reduce artifacts.

Perform  gamma  correction  for

normalization.

O  Convert grayscale images to RGB format.

| 5. Data Balancing with SMOTE:

O Use SMOTE to synthetically oversample IDC-
positive class.

O  Balance both classes to ~140,000 samples each.

| 6.  Split Dataset:

O  Divide data into Train (80%), Validation (10%), and
Test (10%) sets.

O  Shuffle and
representation.

| 7.  Encode Labels:

O  Apply one-hot encoding for binary classification (IDC
=[0,1], non-IDC = [1,0]).

| 8. Model Building (ResNet50V2):

O  Load pretrained ResNet50V2 with ImageNet weights.

O  Customize model: Add GlobalAveragePooling2D,
Dense(256), Dense(128), and final Dense(2) with
sigmoid.

O  Compile with Adam optimizer and categorical cross-
entropy loss.

| 9. Model Training:

O Train model on training set for 10 epochs.

O  Use validation data for monitoring accuracy and loss.

O  Implement early stopping to prevent overfitting.

| 10. Model Evaluation:

O  Evaluate performance on test set.

O  Compute Accuracy, Precision, Recall, F1-Score.

O  Generate confusion matrix, classification report, and
ROC curve.

O  Visualize prediction outcomes on sample test images

| 11. Ablation Study:

O  Modify architectural parameters: remove dense layer,
change pooling, switch optimizer.

O  Compare performance metrics across configurations.

| 12. Comparative Analysis:

O  Compare ResNet50V2 against CNN, CNN-GRU,
DenseNet121.

O  Tabulate accuracy, precision, recall, and F1-score
results.

NumPy, Matplotlib,

OO0 O0OO0O0

brightness

stratify samples for balanced

IV. RESULT ANALYSIS AND DISCUSSION

The findings of the suggested model for the DL model-
based categorization of breast cancer are presented in this
section. This research was conducted and evaluated in an
experimental environment using a system equipped with an
Intel Core 15-8250U CPU at 1.8 GHz, 12 GB of RAM, and

© JGREC 2025, All Rights Reserved

running Windows 10 Professional 64-bit. Python 3 was used
to implement the DL models for IDC classification. The study
also includes a comparative study of several models, including
CNN, CNN-GRU, DenseNet-121, and the proposed
ResNet50V2, using the Breast Histopathology Images dataset.

A. Experiment results

This section presents the experimental outcomes of the
proposed ResNet50V2 model for IDC classification using the
Breast Histopathology Images dataset. Table II highlights the
model's effectiveness in accurately identifying cancerous and
non-cancerous tissue through key performance metrics.

TABLE II. RESULTS OF THE RESNET50V2 MODEL ON BREAST
HISTOPATHOLOGY IMAGES DATASET FOR IDC CLASSIFICATION

Matrix ResNet50V2 Model
Accuracy 0.8852
Precision 0.8847
Recall 0.8859
F1-Score 0.8853

ResNet50V2 Model

0.886 s>

0.8855 (.8853

Precision Recall F1-Score

Accuracy

PERFORMANCE
Fig. 8. ResNet50V2 Model Performance on IDC Breast Cancer dataset

The bar chart presents the ResNet50V2 model’s
performance on the Breast Histopathology Images dataset for
IDC classification as shown in Figure 8 and Table II. The
model shows consistent and high evaluation metrics with
88.52% accuracy, 88.47% precision, 88.59% recall, and an
Fl-score of 88.53%, indicating effective and reliable
classification performance with minimal variance among the
metrics. For Breast Histopathology Images dataset, the
classification outcomes is according to IDC or non-IDC patch.

Model accuracy Model loss
0.98 1 —— Train / 054 — Train
Validation Validation
0.96 1 0.4 4
z
® 0941 2 03
S S
£ 092 02
0.90 4
0.1 1
0.88 T T T T T T T T T T
0 2 4 6 8 0 2 4 6 8
Epoch Epoch

Fig. 9. Accuracy and Loss Curve of ResNet50V2 Model

The ResNet50V2 model's training and validation
performance across 10 epochs are shown in Figure 9. The
training accuracy steadily increases, ultimately reaching a
high of 98.60%, while the validation accuracy stabilizes
around 88.52%, indicating strong learning on the training data
but limited generalization. Similarly, after epoch 2, the
validation loss rises to 0.4507 and peaks close to epoch 8,
whereas the training loss sharply declines to 0.0376,
indicating a widening difference between training and
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validation measures. This overfitting is made evident by this
divergence, in which the model is overfitting the training data
at the expense of its performance on unseen data.

12000

10000
1622

8000

- 6000

Confusion Matrix

True Class 0

True Label

1603

True Class 1

- 4000

- 2000

Predicted Class 0

Predicted Class 1
Predicted Label

Fig. 10. Confusion matrix of ResNet50V2 Model

A Confusion Matrix, which is presented in Figure 10,
shows that the ResNet50V2 model is capable of classifying
samples of breast cancer: IDC. The model was right in its
classification of 12,424 Class 0 and 12,444 Class 1.
Nevertheless, it wrongly categorized 1,622 samples of Class 0
as Class 1 and 1,603 Class 1 as Class 0. The fact that the ratio
between TP and TN is almost equal to 1 suggests that the
model has a high and stable classification capability, has low
FP and FN rates, which indicates that the model is effective
and reliable in separating cancerous and non-cancerous
samples.

Classification Report:

precision recall fl-score support

Class © 0.89 0.88 0.89 14046
Class 1 0.88 0.89 0.89 14047
accuracy 0.89 28093
macro avg 0.89 0.89 0.89 28093
weighted avg 0.89 0.89 0.89 28093

Fig. 11. ResNet50V2 Model Classification Report

Figure 11 displays the ResNet50V2 model's classification
performance, with a balanced precision, recall and Flscores
0f 0.89 in Class 0 and Class 1. The algorithm is both consistent
and effective at distinguishing between malignant and non-
cancerous cases, with a general acc of 89%. In the case of
Breast Histopathology Images dataset, the classification
outcomes is based on IDC or non-IDC patch.

Receiver Operating Characteristic (ROC) Curve

0.8 4 -

0.6 -~

indicates high TPR across all FPR, and it is strongly tilted
towards the upper-left corner. The AUC stands at 0.95, Which
indicates that the model's differentiation between the positive
and negative classes is effective. The shape of the curve and
high AUC score of the model indicate the effectiveness and
strength of the model in the IDC Breast Cancer cases and
hence is very effective and reliable in binary classification in
medical imaging.

Fig. 13. Prediction Images of ResNet50V2 Model

Figure 13 represents the visual prediction results obtained
by the ResNet50V2 model on the histopathological images of
IDC breast cancer, detailing different results in classification.
The figure contains TP, TN, FP, and FN, and the labels of
them show ground truth and model predictions. The majority
of the predictions are consistent with the actual labels,
particularly of positive cases, meaning that the model is rather
reliable. Some misclassifications are found (marked in red),
indicating some difficulty in some difficult or ambiguous
tissue structures. This graphical interpretation supports the
efficiency of the model in practical image classification works
as well as underlines the necessity of further optimization or
augmentation procedures to decrease the quantity of incorrect
forecasts and enhance this model's overall diagnostic
performance in the most important medical imaging
procedures.

B. Ablation Study

The ablation study inspects the effect of given
architectural and training manipulations on the ResNet50V2
model's performance with the dataset of Breast
Histopathology Images. The study endeavors to comprehend
the impact of components of the model, like dense layers,
pooling strategies, optimizers and activation functions, on
model behaviour and generalization. Strauss curves of
accuracy and loss of every configuration indicate training
dynamics, stability and possible overfitting. This methodical
assessment give an idea of the most promising design options
which would help to optimize and refine CNN models to be
more reliable and applicable in real-life medical imaging
scenarios.

TABLE III. ABLATION STUDY RESULTS WITH DIFFERENT PARAMETERS
AND LAYERS OF RESNET50V2 MODEL ON THE TEST SET

0.4

True Positive Rate
AY

0.2 4 -

- ROC curve (area = 0.95)
0.0

0.0 0.2 0.4 0.6 08 1.0
False Positive Rate

Fig. 12. ROC analysis ResNet50V2 Model

Figure 12 shows that the ResNet50V2 model analyzed by
the ROC performs well in classification. The ROC curve
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Methods Accuracy | Precision | Recall | F1-Score
ResNet50V2 + No 89 89 89 89
Dense (128)

ResNet50V2 + 87 88 87 87
GlobalMaxPooling

ResNet50V2 + SGD 87 88 87 87
Optimizer

ResNet50V2 + Only 89 89 89 89
Softmax

Table III presents the results of the ablation study
evaluating the performance of the ResNet50V2 model across
different architectural and optimization configurations. The
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baseline setup with the Dense (128) layer removed and the one
with only the SoftMax layer yielded the best acc, prec, rec,
and F1 of 89%. In contrast, Global Max Pooling and SGD
optimizer had a minimal impact on the metrics, and the
accuracy and recall went down to 87%, indicating that these
changes might restrict the ability of the model to learn intricate
spatial features or to be effective. Altogether, the ablation
analysis indicates that, although simple structures can also
achieve similar performance, the selection of architectures and
optimizers is essential to ensure the best model generalization
and predictive accuracy.

Model C: No Dense(128) Accuracy Model C: No Dense(128) Loss

o 2 4 6 B 0 2 4 6 8
epochs epochs
Fig. 14. Accuracy and Loss Curves of ResNet50V2 Model with No Dense
(128)
Model D: GlobalMaxPooling Accuracy Madel D: GlobalMaxPooling Loss
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Fig. 15. Accuracy and Loss Curves of ResNet50V2 Model with Global Max
Pooling.

Model F: SGD Optimizer Accuracy Model F: SGD Optimizer Loss
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Fig. 16. Accuracy and Loss Curves of ResNet50V2 Model with SGD
Optimizer

Model G: Only Softmax Accuracy Model G: Only Softmax Loss
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Fig. 17. Accuracy and Loss Curves of ResNet50V2 Model with Only
SoftMax with accuracy

Figures 14 to 17 illustrate the comparative analysis of
diverse architectural and optimization changes made to the
ResNet50V2 model. Figure 14 removes the Dense (128) layer
and the training accuracy of the model is 98.59% with a
slightly improved validation accuracy of 89.03% considering
that simplification of the model can increase the
generalization. Figure 15 demonstrates that the application of
Global Max Pooling leads to a slight decline in performance,
and validation accuracy is 87.49% and higher training loss
(0.0468), which means that the feature extraction is less
effective. Figure 16 also shows that when using SGD
optimizer, performance decreases further with the weakest
validation accuracy (87.15%) and the highest validation loss
(0.5316) similar to the low optimization ability of Adam. In
the meantime, Figure 17 shows that the highest validation
accuracy (89.11%) and similar training results are attained by
a single Softmax layer, which suggests that a more simplistic
output setup can be used to successfully perform
classification. The findings provide evidence of the
significance of the architectural and optimization decisions,
and the dense layer and Adam optimizer have a beneficial
impact on the training and generalization of balanced training.

C. Comparative Analysis

The comparison of the important demonstration indicators
for the proposed ResNet50V2 model and the other deep
learning models in the IDC breast histopathology dataset are
listed in Table IV. According to its acc, pre, rec, and F1, the
ResNet50v2 model outperforms the baseline models in
detecting IDC-positive and IDC-negative instances.

TABLE IV. COMPARATIVE ANALYSIS OF DEEP LEARNING MODELS FOR IDC BREAST CANCER CLASSIFICATION

Reference Models Accuracy Precision Recall F1-Score
Proposed Model ResNet50V2 88.52 88.47 88.59 88.53
Base Paper[29] CNN Model 3 87 86 76 85
[30] CNN-GRU 86.21 85 84.60 86
[31] CNN 83 70 82 75
[32] DenseNet-121 79.64 79.97 79.40 79.68

Table IV presents the comparative analysis of the
suggested ResNet50V2 model and a number of baseline
models were employed in the IDC categorization. The
proposed model has the highest total accuracy of 88.52%, and
balanced precision (88.47%), recall (88.59%), and the F1-
score (88.53%) values. ResNet50V2 has better performance
in all measures than CNN Model 3 (87%) and CNN-GRU
(86.21%). Conventional CNN and DenseNet-121 seems to be
worse in their results, with the lowest accuracy by DenseNet-
121 (79.64%). This data illustrations how well the proposed
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ResNet50V2 architecture performs in classifying images of
breast cancer.

This research is able to show a strong deep learning
pipeline of IDC breast cancer identification based on
histopathology images with high performance of 88.52. The
most outstanding is probably the implementation of a
complete preprocessing pipeline with tissue filtering,
Hematoxylin channel enhancement, and image denoising,
which has greatly enhanced the quality of images and
diagnostic accuracy. The fact that a fully fine-tuned

10
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ResNet50V2 model was used with a comprehensive ablation
experiment indicates the strengths of the architecture and its
best settings in detecting IDC. The inclusion of SMOTE to
solve the problem of class imbalance provides fairness and
better generalization of the model. The proposed approach
demonstrates better results compared to the current models,
like CNN, CNN-GRU, and DenseNet121, which proves its
clinical relevance. This unified framework does not only
increase the accuracy of classification, it also forms the basis
of the interpretable, scalable, and automated diagnostic
systems in digital pathology.

D. Limitations and Future Work

Despite the promising outcomes achieved by the proposed
ResNet50V2-based model for IDC classification, this study
has certain limitations. It is also limited to one dataset, and this
fact might not be applicable to different imaging settings and
patients. Although SMOTE can be used to deal with class
imbalance, synthetic patterns are introduced, which do not
necessarily reflect actual histological variations. Moreover,
the model is not yet interpretable which is an important feature
of the model to be adopted in clinical settings. Future
directions will be to increase validation on multi-center and
heterogeneous data, incorporate XAI procedures, such as
Grad-CAM or SHAP to improve transparency, and hybrid
models combining deep and traditional machine learning
classifier (RF or SVM) to improve performance and
interpretation. Furthermore, the idea of creating lightweight or
compressed model versions will be discussed to be able to use
them in clinical environment with limited resources.

V. CONCLUSION

In Breast cancer, early identification and treatment are
critical for positive outcomes. Breast cancer is a disease
originating in the breast cells and can be regarded as one of
the first causes of death among women. The most common
and aggressive type of breast cancer is Invasive Ductal
Carcinoma (IDC) and this type of cancer necessitates early
and accurate diagnosis in order to be treated. The study used
the collection of breast histopathology images to examine
automated IDC categorization using DL algorithms. The
ResNet50V2 architecture was the most successful in the
performance with an acc of 88.52% and balanced values of
pre, rec, and F1. A study of ablation also indicated the
importance of a wide range of architectural and training
parameters on the model effectiveness. The high performance
and strength of ResNet5S0V2 were demonstrated by
comparative analysis with the baseline models, including
CNN, CNN-GRU, and DenseNet-121. On the whole, the
paper presents the promise of DL and the use of ResNet50V2
specifically in helping histopathological IDC detection and
provide better diagnostic processes in the field of medical
imaging. However, compared to traditional DL approaches,
transfer learning performs better in small datasets, making it
the preferable method. This approach will significantly
demonstrate that technology can transform people's lives and
might be utilized in the medical profession to identify tumors
early and accurately. Future work will involve applying
advanced regularization methods, enhancing model
generalization and reducing overfitting with the use of
ensemble learning and substantial data augmentation.

REFERENCES

[1] A. Khalid et al., “Breast Cancer Detection and Prevention Using
Machine Learning,” Diagnostics, vol. 13, no. 19, pp. 1-21, 2023,

© JGREC 2025, All Rights Reserved

[2]

B3]

(4]

[3]

[6]

(7

[8]

91

[10]

[11]

[12]

[13]

[14]

[15]

[1e]

[17]

[18]

doi: 10.3390/diagnostics13193113.

A. Ashurov, S. A. Chelloug, A. Tselykh, M. S. A. Muthanna, A.
Muthanna, and M. S. A. M. Al-Gaashani, “Improved Breast
Cancer Classification through Combining Transfer Learning and
Attention Mechanism,” Life, vol. 13, no. 9, 2023, doi:
10.3390/1ife13091945.

S. Pandya, “Integrating Smart IoT and Al-Enhanced Systems for
Predictive Diagnostics Disease in Healthcare,” Int. J. Sci. Res.
Comput. Sci. Eng. Inf. Technol., vol. 10, no. 6, pp. 2093-2105,
Dec. 2024, doi: 10.32628/CSEIT2410612406.

A. Kaur, C. Kaushal, J. K. Sandhu, R. Damasevicius, and N.
Thakur, “Histopathological Image Diagnosis for Breast Cancer
Diagnosis Based on Deep Mutual Learning,” Diagnostics, vol. 14,
no. 1, 2024, doi: 10.3390/diagnostics14010095.

M. D. Ali et al., “Breast Cancer Classification through Meta-
Learning Ensemble Technique Using Convolution Neural
Networks,”  Diagnostics, vol. 13, mno. 13, 2023, doi:
10.3390/diagnostics13132242.

S. Tangsakul and S. Wongthanavasu, “Deep Cellular Automata-
Based Feature Extraction for Classification of the Breast Cancer
Image,” Appl. Sci., vol. 13, no. 10, 2023, doi:
10.3390/app13106081.

A. Sahu, P. K. Das, and S. Meher, “Recent advancements in
machine learning and deep learning-based breast cancer detection
using mammograms,” 2023. doi: 10.1016/j.ejmp.2023.103138.

M. Korkmaz and K. Kaplan, “Effectiveness Analysis of Deep
Learmning Methods for Breast Cancer Diagnosis Based on
Histopathology Images,” Appl. Sci., vol. 15, no. 3, 2025, doi:
10.3390/app15031005.

S. B. Shah, “Artificial Intelligence (AI) for Brain Tumor
Detection: Automating MRI Image Analysis for Enhanced
Accuracy,” Int. J. Curr. Eng. Technol., vol. 14, no. 06, pp. 320—
327, Dec. 2024, doi: 10.14741/ijcet/v.14.5.5.

B. N. R. Kumar, N. C. Gowda, A. B. J., V. H. N., B. Ben Sujitha,
and D. R. Ramani, “An Efficient Breast Cancer Detection Using
Machine Learning Classification Models,” Int. J. Online Biomed.
Eng., vol. 20, no. 13, pp. 24-40, Oct. 2024, doi:
10.3991/ijoe.v20i13.50289.

M. Giiler, G. Sart, O. Algorabi, A. N. Adiguzel Tuylu, and Y. S.
Tiirkan, “Breast Cancer Classification with Various Optimized
Deep Learning Methods,” Diagnostics, vol. 15, no. 14, 2025, doi:
10.3390/diagnostics15141751.

M. A. Mostafiz, “Machine Leaming for Early Cancer Detection
and Classification: Al-Based Medical Imaging Analysis in
Healthcare,” Int. J. Curr. Eng. Technol., vol. 15, no. 03, pp. 251—
260, Jun. 2025, doi: 10.14741/ijcet/v.15.3.7.

S. Pandya, “Predictive Modeling for Cancer Detection Based on
Machine Learning Algorithms and Al in the Healthcare Sector,”
TIJER - Int. Res. J., vol. 11, no. 12, pp. 549-555, 2024.

C. Kaur and R. Madaan, “Breast Cancer Prediction from Risk
Factors Using Ensemble Technique,” in 2024 2nd International
Conference on Advances in Computation, Communication and
Information Technology (ICAICCIT), 2024, pp. 353-358. doi:
10.1109/ICAICCIT64383.2024.10912245.

D. M. Arachchi, A. Samarasinghe, H. P. D. P. Pathirana, and D.
Samarasinghe, “Comparative Performance Analysis of machine
learning models for Breast Cancer Prediction,” in 2024 8th SLAAI
International Conference on Artificial Intelligence (SLAAI-ICAI),
IEEE, Dec. 2024, pp. 1-6. doi: 10.1109/SLAAI-
ICAI63667.2024.10844931.

A. Kaur and S. Gupta, “Unveiling Precision in Breast Cancer
Prediction with Random Forest and Decision Trees,” in 2024 5th
International ~ Conference on  Smart  Electronics  and
Communication (ICOSEC), 2024, pp. 1232-1236. doi:
10.1109/ICOSEC61587.2024.10722493.

A. Singh and K. S. Kaswan, “Breast Cancer Diagnosis using Soft
Voting Classifier Approach,” in 2024 International Conference on
Emerging Innovations and Advanced Computing (INNOCOMP),
2024, pp. 292-297. doi: 10.1109/INNOCOMP63224.2024.00055.

A. Alsabry, M. Algabri, A. M. Ahsan, M. A. A. Mosleh, A. A.
Ahmed, and H. A. Qasem, “Enhancing Prediction Models’
Performance for Breast Cancer using SMOTE Technique,” in 2023
3rd International Conference on Emerging Smart Technologies

11



[19]

[20]

[21]

[22]

(23]

[24]

Choudhary and Sharma, Journal of Global Research in Electronics and Communication, 1 (12) December 2025, 01-12

and  Applications  (eSmarTA), 2023,
10.1109/eSmarTA59349.2023.10293726.

F. Y. A’la, N. Firdaus, Hartatik, and M. A. Safi’le, “SMOTE on
Numeric Breast Cancer Dataset to Overcome Imbalance Class,” in
2023 6th International Conference of Computer and Informatics
Engineering (IC2IE), 2023, pp- 335-339. doi:
10.1109/IC2IE60547.2023.10331221.

S. Anklesaria, U. Maheshwari, R. Lele, and P. Verma, “Breast
Cancer Prediction using Optimized Machine Learning Classifiers
and Data Balancing Techniques,” in 2022 6th International
Conference on Computing, Communication, Control and
Automation, ICCUBEA 2022, 2022. doi:
10.1109/ICCUBEA54992.2022.10010783.

M. P. Behera, A. Sarangi, D. Mishra, and S. K. Sarangi, “Breast
Cancer Prediction Using Long Short-Term Memory Algorithm,”
in 2022 5th International Conference on Computational
Intelligence and Networks (CINE), 2022, pp. 1-6. doi:
10.1109/CINE56307.2022.10037258.

S. Ara, A. Das, and A. Dey, “Malignant and Benign Breast Cancer
Classification using Machine Learning Algorithms,” in 2021
International Conference on Artificial Intelligence, ICAI 2021,
2021. doi: 10.1109/ICAI52203.2021.9445249.

P. Karatza, K. Dalakleidi, M. Athanasiou, and K. S. Nikita,
“Interpretability methods of machine learning algorithms with
applications in breast cancer diagnosis,” in 2021 43rd Annual
International Conference of the IEEE Engineering in Medicine &
Biology Society (EMBC), 2021, pp. 2310-2313. doi:
10.1109/EMBC46164.2021.9630556.

Y. Khourdifi, A. El Alami, M. Zaydi, Y. Maleh, and O. Er-
Remyly, “Early Breast Cancer Detection Based on Deep Leaming:
An  Ensemble Approach Applied to Mammograms,”
BioMedInformatics, vol. 4, no. 4, pp. 2338-2373, 2024, doi:
10.3390/biomedinformatics4040127.

pp. 1-8.  doi:

© JGREC 2025, All Rights Reserved

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

S. Roy, R. Kumar, V. Mittal, and D. Gupta, “Classification models
for Invasive Ductal Carcinoma Progression, based on gene
expression data-trained supervised machine learning,” Sci. Rep.,
vol. 10, no. 1, pp. 1-15, 2020, doi: 10.1038/s41598-020-60740-w.

R. Karthiga, G. Usha, N. Raju, and K. Narasimhan, “Transfer
Learning Based Breast cancer Classification using One-Hot
Encoding Technique,” Proc. - Int. Conf. Artif. Intell. Smart Syst.
ICAIS 2021, pp. 115-120, 2021, doi:
10.1109/ICAIS50930.2021.9395930.

S. Sharmin, T. Ahammad, M. A. Talukder, and P. Ghose, “A
Hybrid Dependable Deep Feature Extraction and Ensemble-Based
Machine Leaming Approach for Breast Cancer Detection,” /IEEE
Access,  vol. 11, pp. 87694-87708, 2023, doi:
10.1109/ACCESS.2023.3304628.

M. F. Mridha et al., “A Comprehensive Survey on Deep-Learning-
Based Breast Cancer Diagnosis,” Cancers (Basel)., vol. 13, no. 23,
2021, doi: 10.3390/cancers13236116.

S. A. Alanazi et al., “Boosting Breast Cancer Detection Using
Convolutional Neural Network,” J. Healthc. Eng., 2021, doi:
10.1155/2021/5528622.

X. Wang et al., “Intelligent Hybrid Deep Learning Model for
Breast Cancer Detection,” Electronics, vol. 11, no. 17, 2022, doi:
10.3390/electronics11172767.

A. Dequit and F. Nafa, “Advancing Early Detection of Breast
Cancer: A User-Friendly Convolutional Neural Network
Automation System,” BioMedInformatics, vol. 4, no. 2, pp. 992—
1005, 2024, doi: 10.3390/biomedinformatics4020055.

S. Jaruyjunawong and P. Horkaew, “Enhancing AI-Driven
Diagnosis of Invasive Ductal Carcinoma with Morphologically
Guided and Interpretable Deep Learning,” Appl. Sci., vol. 15, no.
12,2025, doi: 10.3390/app15126883.

12



