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Abstract—A significant cause of death very early among 

women is due to breast cancer. Since invasive ductal carcinoma 

(IDC) and breast cancer in general continue to be among the 

most common and fatal illnesses affecting women, prompt 

identification is crucial. Convolutional neural networks (CNNs), 

in particular, are particularly notable in automating image 

processing of breast cancer to the point that the images do not 

need human interpretation. The proposed project enhances the 

detection of IDC by creating a reliable diagnostic algorithm, in 

which deep learning and histopathology images analysis are 

used. On a large-scale dataset of IDCs containing more than 

277,000 image patches, it applied a full preprocessing pipeline, 

including Otsu thresholding, tissue masking, Hematoxylin 

channel extraction, CLAHE enhancement, Gaussian denoising 

and gamma correction to improve image quality. Images with 

low tissue content were eliminated and SMOTE has been 

utilized to work on the imbalance of classes. This was a fully 

fine-tuned ResNet50V2 that was pretrained on ImageNet, and 

then combined with own dense layers and trained based on 

Adam optimizer and binary classification. Accuracy (acc) of the 

model was 88.52%, and precision (pre), recall (rec), and F1-

score (F1) were greater than 88%. The effect of various 

architectural and training setups was studied using ablation and 

confirmed the efficiency of the chosen model. The comparative 

analysis yielded better performance in comparison to the 

existing CNN, CNN-GRU, and DenseNet-based models. The 

results indicate the possibility of AI-based breast cancer 

detection to be used in clinical practice, decrease errors in 

diagnosis, and increase the rate of early diagnoses. Combined 

application of the state-of-the-art image enhancement, balanced 

data depiction, and comprehensive study of the ablation using 

pre-trained CNN models is novel. This adds a high-performing 

and interpretable, yet clinically relevant, solution to the early 

diagnosis of breast cancer by using histopathology.  

Keywords—Breast Cancer, Invasive Ductal Carcinoma, Deep 

Learning, CNN, ResNet50V2, Histopathology, Image 
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I. INTRODUCTION 

Cancer is a global disease that impacts people of all ages 
and socioeconomic backgrounds [1]. Breast cancer is among 
the most prevalent cancers in women, despite the fact that 
there are many different kinds of the disease. The primary 
cause of mortality for female cancer patients globally is breast 
cancer. Numerous women are impacted by this serious global 
issue because to its high frequency and deadly nature. The 
most common disease, making up over 14% of all 
malignancies, is breast cancer, which has significant rates of 
death and morbidity among women globally [2][3]. It affects 
around 2.1 million women annually and raises their death rate. 

Estimates for 2020 put the death toll from breast cancer at 
6,855,000 women. As the most common method for 
diagnosing breast cancer, the histopathological examination, 
breast cancer stands out among the many types of cancer due 
to its high mortality rate and provide that it is the most 
prevalent kind of cancer in women globally [4]. 

IDC is the most common kind of breast cancer that 
develops when the breast is invaded by ductal carcinoma. 
Cancer can take many distinct forms.  IDC begins in the milky 
ducts of the breast and accounts for around 80% of all cases 
of breast cancer [5]. The IDC has the capacity to spread to 
other areas of the body after infecting lymph nodes. 
Traditional diagnostic approaches rely heavily on 
histopathological analysis, where expert pathologists 
manually examine tissue samples under a microscope. 
Histopathological images, which are used for disease inquiry 
and are microscopic pictures of tissues, are the gold standard 
when it comes to cancer diagnosis. These pictures provide 
important and useful information that medical professionals 
may thoroughly examine to determine the patient's current 
condition.  Histopathology images were hard to find and 
obtain until recently, and the scientific community could not 
access them [6]. Consequently, the majority of histopathology 
image studies, particularly those involving breast cancer 
images, were conducted on very limited datasets. Despite its 
status as the gold standard, this method is laborious, expert-
only, and susceptible to inter-observer variability. To reduce 
diagnostic delays and improve consistency, AI has become a 
viable option for illness diagnosis and medical imaging [7]. 

Software that is backed by AI is necessary for 
identification of breast cancer to reduce the workload for 
qualified medical personnel and avoid misinterpretation.  This 
problem remains unsolved in the present state of AI-supported 
breast cancer diagnostic systems [8]. The use of ML 
approaches for breast cancer categorization has received a lot 
of attention within the AI sector.  However, the conventional 
ML techniques tend to rely on manually created features and 
domain-specific knowledge and this restricts their scalability 
and versatility across datasets [9]. Such techniques are also not 
effective when the image is complex and when there are 
differences in morphology of tissues as is the case in 
histopathological images. To address the above challenges, 
scholars have resorted to DL, which is an enhanced section of 
ML that allows automatic feature extraction and direct 
representation learning directly on raw images [10]. One 
technique of ML is referred to as DL and it utilizes neural 
networks. The neurons in each layer are connected to the other 
by weighted connections as the intricate structure of the DL 
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networks involves more than one layer [11]. To speed up these 
procedures and improve diagnostic accuracy, researchers have 
put forth a variety of DL models for the detection and 
classification of breast cancer. The application of DL 
techniques and CNNs in particular has transformed the 
medical analysis of images by representing the hierarchies of 
data space and enhancing the level of accuracy in 
classification. The annotated datasets and high computational 
resources required to train deep CNNs are however not always 
available in the medical domain [12]. Enhancing pre-trained 
models on a big dataset (like ImageNet) for specific objectives 
like breast cancer classification has been a well-liked remedy 
for this problem. The approach improves the generalization of 
models on small medical data but also accelerates the training 
[13]. In the study, it uses a DL-based CNN architecture that 
uses an already-trained transfer learning model with several 
parameter adjustments to enhance the categorization of 
images of histological breast cancer. 

A. Motivation and Contributions 

Breast cancer, especially IDC is a major health problem 
which needs early and precise diagnosis to be treated. 
Analysis of histopathological images is a tedious task that is 
prone to diagnostic errors. The necessity to identify IDC, the 
most common type of breast cancer, with high precision and 
promptness is a motivated cause of the research because it 
significantly increases the outcomes of treatment and survival 
rates. Traditional methods of diagnosis, such as manual 
review of histopathology slides, are tedious, subjective, and 
prone to human error. As more and more data is available on 
digital pathology platforms, and companies turn to deep 
learning, the future of automated, objective, and highly 
accurate diagnostic tools can be hoped. By utilizing 
convolutional neural networks and, in particular, pre-trained 
ones, it is possible to extract meaningful features out of 
complex histopathological images and help the pathologists 
arrive at a faster and more accurate conclusion. The study in 
question utilizes such AI capabilities to improve the accuracy 
of diagnostics, cut down on the workload, and play a role in 
more effective screening and diagnostics of breast cancer.  

B. Contributions and Significance of the Study 

The general objective of the research is to assist in early 
diagnosis and also improve clinical decision-making through 
the development of a valid and automated DL-based approach 
that is capable of detecting IDC in breast histopathology 
images. The key contributions are as: 

• This paper presents a new and domain-specific 
preprocessing pipeline that is specific to 
histopathological breast tissue images. It combines the 
pipeline, CLAHE, and denoising which leads to 
quality image input that can increase the visibility of 
features and model interpretability. 

• The research uses SMOTE to overcome Class 
imbalance is a prevalent issue in medical datasets. This 
guarantees the equal representation of IDC-positive 
and IDC-negative classes, which is important to reduce 
the model bias and guarantee the high level of 
classification. 

• The main finding is that the ResNet50V2 model that 
was originally trained on ImageNet was adapted and 
optimally fine-tuned to IDC in breast histopathology 
images. The paper has shown that even general-
purpose CNNs can be highly accurate in classifying 
medical images with an appropriate choice of tunings. 

• The proposed design incorporates a simplified 
classification head to the ResNet backbone layers. The 
design has low chances of overfitting and good 
learning ability; thus it is applicable in large-scale 
medical imaging with limited computation 
capabilities. 

• Model performance is completely justified with a set 
of diagnostic measures such as the Confusion Matrix, 
F1score, ROCAUC, rec, acc, and pre. This is a multi-
level assessment which ensures that the model is 
transparent and reliable in the decision making of a real 
diagnostic scenario. 

The research is also important in medical imaging and 
cancer diagnosis because it provides a robust, automated 
system for detecting IDC in histopathology images. Early and 
correct diagnosis of breast cancer is linked to better patient 
outcomes and efficient treatment; however, manual analysis 
of the data (involving pathologists) can be tedious, subjective, 
and subject to mistakes. Combining innovative image 
processing methods with DL, the work helps increase 
diagnostic accuracy, reduce human input, and facilitate 
clinical decision-making. In addition, the method is scalable 
and can be applied to other medical imaging tasks, using 
publicly available data and methods that can be reproduced, 
thereby enabling the development of AI-assisted healthcare 
solutions. 

C. Novelty and Justification 

The research presents a novel framework of IDC breast 
cancer detection by using the power of CNN-trained models 
alongside sophisticated image processing and data balancing. 
In contrast to the other methods, which usually ignore the 
effect of low tissue quality or use custom CNNs, this paper 
specifically combines high-performing pre-trained 
convolutional networks with fine-tuning to that particular 
task, i.e., histopathological analysis. Balanced distribution of 
classes is guaranteed during the use of SMOTE and this 
increases the robustness of the model and minimizes 
prediction bias. One of the novelties is also the consideration 
of a detailed ablation study where every preprocessing method 
and model architecture is studied in detail. This thorough 
analysis gives an important rationale to the design decisions, 
giving openness and understanding of the role played by each 
component in the performance of the model. This work is a 
unique and worthy addition to automated breast cancer 
diagnosis due to the combined efforts of high-quality image 
processing, pre-trained CNN models and empirical validation. 

D. Organization of the Paper 

This paper is organized as follows: Related work and 
current issues are covered in Section II. Section III explains 
the dataset, preprocessing techniques, and proposed 
ResNet50V2 model architecture. Experimental findings, 
assessment criteria, and comparative analysis are presented in 
Section IV. Section V discusses the findings and what they 
mean for future research. 

II. LITERATURE REVIEW 

The section provides a review of previous research 
concerning the use of breast cancer prediction with the help of 
ML and DL models, where high accuracy was achieved on 
structured data, with some focus on the histopathology images 
and sophisticated DL architectures. 
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Kaur and Madaan (2024) use the available methods and 
determine some of the risk factors that lead to breast cancer. 
Breast cancer risk analysis may be anticipated using machine 
learning techniques. The approach involves gathering a 
dataset of patients, pre-processing the dataset to eliminate 
unnecessary information and reduce dimensionality, 
normalizing features, and dividing the dataset into training and 
testing sets. For breast cancer therapy to be successful, early 
diagnosis is crucial.  The proposed work's effectiveness is 
assessed and validated using the Breast Cancer Surveillance 
Consortium Dataset.  RF exhibited the highest accuracy of 
75.2% [14]. 

Arachchi et al. (2024) early detection of Breast Cancer is 
essential, and many lives can be spared with effective 
treatment. The WBCD dataset data was examined and utilized 
in several ML models. SVM, KNN, Naïve Bias model, 
Logistic Regression (LR), AdoBoost and DT were used for 
prediction. This paper covers the findings and evaluations of 
many ML models for Breast Cancer detection. Comparing the 
results reveals that the AdoBoost model yields the best 
outcomes. 96% accuracy and logistic regression model is 
predicted 96% of ROC value. Logistic regression model and 
AdoBoost, which is better than the previously published 
approach [15]. 

Kaur and Gupta (2024) employ Random Forest and DT 
approaches to use the Breast Cancer Wisconsin data to 
increase the accuracy of breast cancer diagnoses. These 
methods investigate thirty features taken from digital images 
of tiny needle aspirates in order to obtain minute cell nuclei 
properties. After data collecting, analysis, visualization, and 
model deployment follows hyperparameter tuning via 
GridsearchCV. Although the RFC had remarkable accuracy 
of 93%, indicating resilience in managing complex data, the 
Decision Tree classifier resulted in 91% accuracy. These 
results show how well ML techniques might be applied to 
enhance the diagnosis of breast cancer, therefore providing 
doctors more precise tools for early identification and better 
patient treatment [16]. 

Singh and Kaswan (2024) proposed method in their 
research are the use of a soft voting classifier for automatic 
assessment of malignancy or benignancy of breast cancer 
using three ML algorithms: LR, SVM, and DT. The suggested 
method is tested and evaluated using the 699-item Breast 
Cancer Wisconsin dataset (Original). The data is balanced 
using the random oversampling method to minimize the bias. 
The methodology that is proposed, gives 0.9708 accuracy, 
0.9821 precision, 0.9483 recall, and an F1score of 0.9649 with 
an AUC of 0.9678 [17]. 

Alsabry et al. (2023) using SMOTE to fix the dataset's 
imbalanced target class is the goal of improving BC prediction 
models. The models are evaluated using two methods: the first 
makes use of the first, which uses SMOTE to balance the 
target class in the Breast Cancer Coimbra Dataset (BCCD). 
The comparison of the two methods' performance shows that 
using SMOTE considerably enhances the BC prediction 
models' performance. The Optimized Logit Boost model 
achieved a 73.9% accuracy rate with SMOTE, whereas 
AdaBoost with Bayesian Optimization attained a 52.2% 
accuracy rate. Without SMOTE, the model obtained a rate of 
76% [18]. 

A’la et al. (2023) results in just a tiny fraction of the 
imbalance dataset being present in the coimbra breast cancer 

dataset.  Nevertheless, this might be problematic for building 
ML models, since the resulting model can favor the majority 
and under-predict the minority. This study employs SMOTE 
in an effort to reduce the class imbalance. Following the 
SMOTE implementation, a 10-fold cross-validation ML 
model is constructed using the RF technique. The model is 
then evaluated for acc, pre, and rec. Results demonstrate an 
improvement in model acc (from 76.72% to 80.47%), pre 
(from 76.60% to 80.00%), and rec (from 69.23% to 81.25%) 
[19]. 

Anklesaria et al. (2022) sought to integrate various ML 
algorithms with hyperparameter tweaking that pick features 
using the RF Feature Importance Method, include ANN, DT, 
RF, KNN, SVM, LR, and NB. These models were trained 
using the WDBC dataset, which stands for the Wisconsin 
Diagnostic Breast Cancer. Additionally, they found that 
Undersampling produced a superior overall outcome after 
balancing the dataset using both SMOTE and Undersampling. 
Specificity, accuracy, sensitivity, F1score, precision, recall, 
and AUC are performance assessment criteria for the 
developed model. According to the results, the two most 
successful models that fitted their dataset were KNN (95.3% 
accuracy) and SVM Algorithm (95.8% accuracy) [20]. 

Behera et al. (2022) utilized five distinct ML algorithms 
on the BC dataset: KNN, SVM, DT, RF, and LSTM. 
Confusion matrices, precision, F1 scores, recall, and accuracy 
used to compare the results obtained by the LSTM classifier 
to those of the KNN, SVM, RF, and DT classifiers. This 
study's main objective is to identify the best ML algorithm for 
breast cancer prediction. The LSTM algorithm has the highest 
accuracy of 96%, as it is demonstrated to be superior to all the 
other algorithms under review [21]. 

Ara, Das and Dey (2021) The study made use of the 
Wisconsin Breast Cancer Dataset, which was accessible via 
the UCI repository. Through data analysis, this study 
evaluates how well a number of machine learning algorithms 
predict breast cancer. Here, SVM, LR, DT, KNN, NB, and RF 
are used as classifiers in determining if a tumor is benign or 
malignant. The most suitable algorithm is selected by 
computing and comparing the accuracy of each of the 
algorithms. The analysis indicates that RF and SVM are 
superior to other classifiers with a 96.5 percent accuracy level. 
These classifiers can be applied to develop an automated 
system of preliminaries of breast cancer [22].  

Karatza et al. (2021) used AI techniques such as RF, NN, 
and ENN to attain this goal. They offered descriptions and 
optimization of their behavior, and interpretability, such as 
Shapley Values (SV), Individual Conditional Expectation 
(ICE) plots, and the Global Surrogate (GS) approach. The AI 
algorithms were trained and tested using the WDBC data set 
from the public UCI repository. The suggested ENN 
performed best in diagnosing breast cancer, with an acc of 
96.6% and an area under the ROC curve of 0.96. By 
decreasing the AUROC curve to 0.97 and the accuracy of RF, 
which was 96.49%, to 97.18%, the RF performed better when 
the features were chosen based on their relevance as 
determined by the GS model. In addition, feature selection 
based on the features' relevance as assessed by SV improved 
the NN's performance (resulting to an increase in accuracy 
from 94.6% to 95.53% and an AUROC curve from 0.94 to 
0.95) [23].  
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The comparative study of previous research on DL models 
for breast cancer diagnosis is shown in Table I. 

TABLE I.  COMPARATIVE ANALYSIS OF EXISTING WORK ON DEEP LEARNING MODELS FOR BREAST CANCER DETECTION 

References Methodology Dataset Result Advantages Limitations Recommendations 

Kaur and 

Madaan (2024) 

ML with feature 

extraction, 
normalization, RF 

Breast Cancer 

Surveillance 
Consortium 

(BCSC) 

Random Forest: 

75.2% accuracy 

Integrates risk factors 

with ML; real-world 
dataset 

Accuracy lower 

than 80%; lacks 
deep learning 

Explore ensemble DL 

models and additional 
biomarkers 

Arachchi et al. 

(2024) 

SVM, KNN, Naive 

Bayes, LR, 
AdaBoost, DT 

WBCD 

(Wisconsin) 

AdaBoost: 96%, 

LR: 96% ROC 

Multiple models 

compared; strong 
ensemble results 

Small dataset; no 

feature selection 
mentioned 

Use larger datasets, test 

robustness with noise 

Kaur and Gupta 

(2024) 

Random Forest, 

Decision Tree + 
GridSearchCV 

WBCD RF: 93%, DT: 

91% 

Hyperparameter 

tuning; good visual 
analysis 

Doesn't compare 

with DL models 

Include CNN/LSTM or 

hybrid ensemble 
comparisons 

Singh and 

Kaswan (2024) 

Soft Voting Classifier 

(LR + SVM + DT) 

WBCD 

(Original) 

Accuracy: 

97.08%, AUC: 

0.9678 

Combines classifiers; 

handles imbalance 

with oversampling 

Dataset size is 

small; potential 

overfitting 

Try SMOTE-ENN and 

feature reduction 

techniques 

Alsabry et al. 

(2023) 

Multiple tree & SVM 

models + SMOTE 

BCCD 

(Coimbra) 

Best: Logit Boost 

(88%), others 

<85% 

Detailed SMOTE 

impact; many 

algorithms 

Low accuracy on 

small models; 

imbalance issues 

Explore deep networks 

and domain 

knowledge-driven 
features 

A’la et al. 

(2023) 

Random Forest + 10-

fold CV + SMOTE 

Coimbra Dataset Before SMOTE: 

76.72%, After: 

80.47% 

Boost in precision, 

recall with SMOTE 

Still moderate 

performance 

(<85%) 

Combine SMOTE with 

ensemble learning for 

robustness 

Anklesaria et 

al. (2022) 

SVM, LR, KNN, DT, 

RF, ANN, NB + 

Feature Selection 

WDBC Best: SVM: 

95.8%, KNN: 

95.3% 

Feature importance 

analysis; 

comparative study 

Focus only on 

WDBC; no time-

series methods 

Apply temporal/deep 

learning on sequence 

data 

Behera et al. 

(2022) 

KNN, SVM, DT, RF, 

LSTM 

BC Dataset Best: LSTM: 96% First use of LSTM; 

compares with 

traditional ML 

Details on dataset 

and preprocessing 

unclear 

Benchmark LSTM on 

other datasets like 

BCSC, BCCD 

Ara, Das and 
Dey (2021) 

SVM, LR, KNN, DT, 
RF, NB 

WBCD (UCI) RF, SVM: 96.5% Simple comparison; 
clear performance 

metrics 

No use of 
balancing or 

advanced 

preprocessing 

Consider imbalanced 
dataset handling 

(SMOTE) 

Karatza et al. 

(2021) 

RF, NN, Ensembles + 

SHAP, ICE, 

Surrogate Models 

WDBC (UCI) ENN: 96.6%, RF: 

97.18% 

Interpretability + 

Performance; use of 

SHAP 

Needs more 

external 

validation 

Apply models to real-

world/clinical datasets 

(BCSC) 

A. Research Gaps 

Several research gaps exist in breast cancer prediction 
despite significant advancements using ML and DL 
techniques. Current studies have demonstrated promising 
accuracy using models like SVM, RF, ANN, and ensemble 
classifiers on structured datasets like WBCD and BCCD. 
However, limited work has explored high-resolution 
histopathological image data using advanced CNN 
architectures. Moreover, class imbalance issues are often 
under-addressed, and many approaches lack comprehensive 
preprocessing pipelines. The integration of deep learning with 
optimized preprocessing and SMOTE-based balancing for 
IDC detection remains underexplored, particularly in real-
world clinical image datasets like the Breast Histopathology 
Images dataset. 

III. METHODOLOGY 

The suggested approach for detecting IDC breast cancer 
using the Breast Histopathology Images collection is detailed 
in this section. This approach describes the use of the Breast 
Histopathology Images collection for IDC breast cancer 
identification. After collecting data from Kaggle, exploratory 
analysis identifies class imbalance. Preprocessing, image 
enhancement, and balances the dataset is then separated into 
three categories: validation, testing, and training. Labels are 
one-hot encoded for binary classification. A ResNet50V2 
model is evaluated for its performance in using the F1score, 
recall, accuracy, and precision for feature extraction and 
categorization. This entire process is shown in Figure 1. 

 

Fig. 1. Data Flow Diagram 

The stages of the suggested technique flowchart 1 are 
described in short below: 

Breast Histopathology Images 
Dataset 

Data Pre-processing 

Results 

Applying SMOTE 

Data Splitting 

Categorical Encoding 

 Train Test Validation 

Classification Model: 

ResNet50V2 

Evaluation Metrics: 

Accuracy, Precision, 

Recall, F1-Score  

Ablation Study 
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A. Data Collection 

The "Breast Histopathology Images" dataset, which 
focusses on IDC, Kaggle provided the most prevalent subtype 
of breast cancer, which was used in this study. The breast 
cancer histopathology pictures in the IDC collection are built 
up as patches with dimensions of 50 × 50 pixels. With these 
patches, it may find both IDC positive and negative images. 
There are 277,524 photos in total, of which 78,786 are IDC 
positive and 198,738 are IDC negative. Each of these patches 
has a Magnification Factor of 40×. This research uses a subset 
of the IDC dataset. Figure 2 displays the example photos from 
the Breast Histopathology images collection. 

 

Fig. 2. Sample Images of Breast Histopathology Images dataset 

B. Exploratory Data Analysis (EDA) 

The Breast Histopathology Images dataset for IDC 
classification was well explored with exploratory data 
analysis (EDA). First, it was found that the dataset provided a 
major imbalance between the Positive and Negative images of 
IDC, as indicated in Figure 3. A rich preprocessing pipeline 
was carried out in order to improve data quality, as shown in 
Figure 4, where data was resized, then masked for tissues, 
stains were extracted, followed by contrast and noise post-
processing. Figure 5 presents some of the outputs of the pre-
processed images, which are clear and consistent enough to be 
used as model input. Lastly, Figure 6 shows the SMOTE 
effect, which balances the classes, solving the data imbalance 
issue to train a better model. 

 

Fig. 3. Distribution of IDC Positive vs IDC Negative Breast Cancer Images 

The class distribution of the Breast Histopathology Images 
dataset for IDC classification is shown in Figure 3. It reveals 
a significant imbalance, with 198,738 images labeled as IDC 
Negative (healthy tissue) and only 78,786 images labeled as 
IDC Positive (invasive ductal carcinoma). This disparity 
highlights a common challenge in medical image 
classification tasks class imbalance, which can affect model 
performance and bias predictions. To overcome this 
imbalance through such techniques as SMOTE is critical to 
achieve robust and fair classification in Breast Cancer 
detection systems. 

 

Fig. 4. Preprocessing Stages for Breast Histopathology Image 

Enhancement 

The steps of sequential preprocessing of breast cancer 
histological pictures shown in Figure 4. It starts with resizing 
(a), masking tissues (b) to isolate regions of interest and 
extraction of the Hematoxylin stain (c). CLAHE (d) is used to 
enhance contrast and denoising (e) is used to reduce noise. 
Photo-adjustment (f) enhances brightness and contrast with 
gamma correction and the resulting (g) is translated into the 
RGB format that is uniform to input the ResNet50V2 
classification model. 

 

Fig. 5. Sample Output of Preprocessed Histopathology Images Used for 

IDC Classification 

Five sample histopathology image patches, as a result of 
the full preprocessing pipeline, are shown in Figure 5. Every 
processed image demonstrates a signal increase in contrast 
and better cellular structures, which allow better feature 
extraction. These are high clarity, standardized images, which 
are fed to the CNN model to provide homogenous information 
representation when performing IDC classification. 

C. Data Preprocessing 

Deep learning methods use histopathology images as 
inputs, thus preprocessing is essential in ensuring that the 
images can be used in such models, as well as, extracting the 
best out of the models in terms of image quality, variety, and 
accuracy [24]. The preprocessing involves seven major 
processes namely: image resizing, tissue masking, 
hematoxylin imaging, CLAHE imaging, Denoised Imaging, 
Gama Corrected Images, Grey to RGB Images. 

•  Image Resizing: Image patches of all the 
histopathology are resized to 124×124 pixels to 
normalize the input size of the model. 

• Tissue Masking: Background Masking is the method 
used to isolate tissue regions by threshold-based 
masking to isolate only the tissue. 

• Hematoxylin Imaging: The Hematoxylin channel is 
removed to highlight the structures of nuclei by using 
color deconvolution. 

• CLAHE Imaging: A method called Contrast Limited 
Adaptive Histogram equalization may boost local 
contrast and highlight features. 

• Denoised Imaging: Denoised Imaging removes 
artifacts and background noise to enhance clarity of 
cellular structures in images. 

• Gamma Corrected Images: Brightness and contrast 
are adjusted via gamma correction for better image 
normalization. 

• Gray to RGB Images: Processed grayscale images 
are converted back to RGB format for compatibility 
with CNN models. 

D. Applying SMOTE 

The Python scikit-learn module was used to implement the 
SMOTE, which was aimed at addressing the class imbalance 
[25]. To balance the dataset used to train the algorithms, it 
creates artificial samples of the minority class. A balanced 
dataset with 140,463 images in each class (IDC Negative and 
IDC Positive) is displayed in the output following the 
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application of the SMOTE technique. To ensure consistent 
input dimensions for DL model training, the image and label 
arrays are appropriately reshaped. 

 

Fig. 6. Class Distribution of IDC Positive and Negative Samples After 

SMOTE Balancing Technique 

The class distribution of IDC positive and IDC negative 
breast cancer images after applying the SMOTE method as 
shown in Figure 6. The graph shows that the two classes have 
been equalized to around 140,000 samples apiece, correcting 
the previous disproportion in the classes. This balanced 
dataset allows all the classes to get equal representation in the 
deep learning model so that it is better at generalizing, less 
biased to the majority class and better at classification used in 
detecting IDC. 

E. Data Splitting 

To guarantee that the DL models are completely trained, 
validated, and tested, Training, validation, and test sets are the 
three divisions of the dataset[24]. The dataset, consisting of 
280,926 images after the application of SMOTE, is divided 
into three subsets by an 80-10-10 ratio: 80% (224,740 images) 
to be used in the model training, 10% (28,093 images) to 
validate the hyperparameters and track the overfitting, and 
10% (28,093 images) to be used in the final test. This split 
ensures effective model learning, evaluation, and 
generalization on unseen breast cancer histopathology images. 

F. Categorical Encoding  

A collection of finite and collected categories with 
components that are mutually exclusive determines how 
categorical variables are encoded. A CNN input picture for 
each subclass is represented by a numerical value vector [26]. 
A two-dimensional vector representing each label is used to 
correspond to the two classes: IDC Negative and IDC 
Positive, enabling compatibility with the binary classification 
output layer in the neural network. This transformation was 
performed on all three datasets, training, validation, and test—
resulting in label shapes (224740, 2) for training, preparing the 
data for the SoftMax-style classification layer of the deep 
learning model. 

G. Classification Model for Breast Cancer 

This section discusses the analysis and classification of DL 
model ResNet50V2 that explained in below: 

1) ResNet50V2 
CNN with outstanding performance across a range of 

computer vision applications is ResNet50V2. The 
deterioration issue in deep networks is addressed by this 
variation of the ResNet design, which employs skip 
connections. The 50-layer ResNet50V2 was pre-trained using 
ImageNet and other large-scale image datasets [27]. The 
network is able to learn residual mappings and deeper models 

may be trained with the help of residual blocks. Another 
manner in which skip connections enhance training is by 
enabling the direct passage of gradients from earlier to later 
layers. Because of its feature extraction capabilities, the 
ResNet50V2architecture finds use in breast cancer detection, 
particularly in cases where the patterns are complex and 
hierarchical. Deep layers in ResNet50V2 learn abstract 
representations of breast tissue textures, forms, and features 
that are critical for malignant vs benign tissue classification. 
The benefit of transfer learning (TL) is brought about by using 
the pre-trained ResNet50V2 model, which has learnt generic 
characteristics from a large-scale image dataset like 
ImageNet. ResNet50V2 is able to obtain broad image 
representations by pre-training, which may then be refined for 
the diagnosis of breast cancer. The Breast Cancer detection 
system may benefit from the taught features from 
ResNet50V2 in terms of both accuracy and functionality. 
ResNet50V2 adopts a modified residual block with pre-
activation. The residual mapping is defined as Equation (1): 

 𝑦 = 𝑥 + ℱ(𝑅𝑒𝐿𝑈(𝐵𝑁(𝑥)))), {𝑊} () 

Where, x = input to the residual block, y = output of the 
block, BN (⋅) = batch normalization, ReLU(⋅) = activation 
function, F (⋅) = series of convolutions with weights{W}. This 
equation reflects the pre-activation structure of ResNet50V2, 
where normalization and activation precede the convolutional 
operations within the residual path. 

 
Fig. 7. Architecture of ResNet50V2 Model 

The architecture of the suggested DL model for IDC 
Breast Cancer classification, which is based on ResNet50V2, 
is displayed in Figure 7. The ResNet50V2-based model 
utilizes a robust transfer learning strategy to classify 
histopathology image patches into IDC-positive (cancerous) 
or IDC-negative (non-cancerous) categories. The input layer 
processes RGB images resized from 50×50 to 124×124×3 to 
match the expected dimensions of the pretrained model. 
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The ResNet50V2 architecture imported in include 
top=false with ImageNet weights initialized is a potent feature 
extractor that is optimized for medical imaging. This is 
followed by GlobalAveragePooling2D layer that summarizes 
spatial information without cutting the most prominent 
features, which decreases the occurrence of overfitting 
relative to flattening techniques. The resulting features are 
then run through two fully connected layers, the first layer 
being a Dense layer of 256 and ReLU-activated units to refine 
complex features and followed by the second layer of a Dense 
layer of 128 and ReLU-activated units to refine the high-level 
features. The last layer is the Dense (2, activation='sigmoid') 
which does binary classification by returning the class 
probability of IDC and non-IDC. This model can be adjusted 
to histopathology data because ResNet50V2 base is set to be 
trainable which is essential. An Adam optimizer with a binary 
cross-entropy loss and a learning rate of 0.0001 is used to build 
the model.  In binary classification issues (such as IDC vs. 
non-IDC in breast cancer diagnosis), binary cross-entropy is a 
frequently used loss function. The objective is to divide the 
data into two distinct categories. It compares a discrepancy 
between true labels (𝑦) and model predictions (𝑦̂). The binary 
cross-entropy loss of binary classification problems is defined 
by Equation (2): 

 𝐿 = −
1

𝑁
∑ (𝑦𝑖 . 𝑙𝑜𝑔(𝑦̂𝑖)
𝑁
𝑖=1 + (1 − 𝑦𝑖). log⁡(1 − 𝑦̂𝑖̂)) () 

Where: 

• 𝑁 = Total number of samples 

• 𝑦 ∶ true label (0 or 1). 

• 𝑦̂𝑖: Forecasted probability of the +ve class (0 ≤ 𝑦̂𝑖). 
• log = Natural logarithm 

The training is performed with a Batch Size of 32 and 10 
epochs, with an independent validation set to measure the 
performance of generalization. The parameters like accuracy 
and loss are tracked throughout the stages of training and 
validation to make sure the model converges as much as 
possible and is discriminative in the identification of breast 
cancer.  

The research analyzed the ResNet50V2 model's ability to 
classify breast histopathology pictures in binary using a 
variety of training and architectural changes. In the case of 
removing the Dense (128) layer, the model demonstrated a 
reduction in its accuracy, which shows that this layer, which 
is fully connected, is a critical component of acquiring high-
level features of cancerous tissue. Making the Global Max 
Pooling instead of Global Average Pooling also resulted in 
greater sensitivity to dominant features at the expense of 
generalization, with a further risk of overfitting. Replacing the 
optimizer with Adam with SGD, instead of making the 
optimization process faster, led to worse final accuracy, which 
suggests that SGD with a fixed learning rate and nonadaptive 
momentum discourages the optimal weight changes in this 
medical imaging example. Lastly, the application of 
categorical cross-entropy instead of a sigmoid cross-entropy 
on the output layer, with the use of only the rather erratic 
performance on binary classification, was brought on by a 
SoftMax function, which performs poorly with two-class 
probabilities. These findings collectively emphasize the 
critical roles of the Dense (128) layer, Global Average 
Pooling, adaptive optimizers like Adam, and the sigmoid 
activation function in achieving optimal classification 
performance with the ResNet50V2 backbone.  

H. Model Evaluation 

An important part of creating a successful deep learning 
model is model evaluation.  The performance of the trained 
model is evaluated by applying it to the test photographs for 
classification after image pre-processing, training, and 
validation. Many metrics are used for assessment, including 
the area under the ROC curve (AUC), the ROC, cross-
validation, and the confusion matrix. Commonly utilized to 
construct evaluation metrics are the following concepts in 
confusion metrics: true negative (TN), i.e., the classifier's 
prediction and the test instances were both negative; true 
positive (TP), i.e., the results of the test cases and the 
classifier's prediction were both positive; false negative (FN), 
i.e., the classifier forecast a negative result even if the test 
examples were positive; and lastly, false positive (FP), i.e., the 
results of the tests were negative, yet the forecast came out 
positive[28]. The model's classification performance is 
frequently assessed using the confusion matrix's accuracy, 
pre, rec, and F1. These measures are briefly summarized in the 
next paragraphs. 

1) Accuracy 
The accuracy score of the computation of a model involves 

dividing the total number of forecasts by the proportion of 
accurate predictions. It only shows the predictions for normal 
patients and the diagnoses for abnormal breast cancer patients 
as a percentage. Equation (3) provides a definition for the 
accuracy. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TruePositive+TrueNegative

𝑇𝑜𝑡𝑎𝑙
 () 

2) Precision 
The true positive results, including those that the classifier 

misidentified, are divided by the actual positive results to 
calculate precision. Equation (4) may be used to express 
precision. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TruePositive

TruePositive+FalsePositive
 () 

3) Recall 
The ratio of TP findings to TP samples that ought to have 

been identified is the measure of rec. Both rec and pre should 
be good when diagnosing medical images after decreasing the 
number of patients who are misdiagnosed as malignant. 
Equation (5) may be used to calculate the rec. 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
TruePositive

TruePositive+FalseNegative
 () 

4) F1-Score 
The F1-score is a measure of the acc of each class's model. 

When the dataset is unbalanced, the F1measure is often used. 
Comparing two models with high Sn and low Pre is helpful. 
Equation (6) may be used to define it. 

 𝐹1 − ⁡𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 () 

5) ROC_AUC 
The ROC curve visually represents performance across 

thresholds, with AUC providing a summary of the model's 
class-distinction capabilities. 

I. Algorithm: IDC Breast Cancer Classification 

Input: Breast Histopathology Images Dataset (Kaggle) 

Output: Trained ResNet50V2 model capable of classifying IDC and non-

IDC patches. 

 
1. Import Libraries: 
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o  Import Python libraries: NumPy, Matplotlib, 
OpenCV, Seaborn, and PIL. 

o Import TensorFlow and Keras modules (e.g., 

tensorflow.keras, Image Data Generator). 

o Import imblearn for SMOTE. 

o Import sklearn metrics and preprocessing tools. 
2. Load Dataset: 

o Download and extract the Breast Histopathology 

Images dataset from Kaggle. 

o Load image patches (50x50) and their labels (IDC 

positive = 1, IDC negative = 0). 

o Visualize sample patches and class distribution. 

3. Exploratory Data Analysis (EDA): 

o Analyze class imbalance. 

o Visualize IDC-positive vs. IDC-negative patch 

counts. 

o Plot sample tissue images and perform pixel 
distribution analysis.  

4. Data Preprocessing: 

o Resize all patches to 124×124 pixels. 

o Apply tissue masking to remove background. 

o Extract hematoxylin stain via color deconvolution. 

o Apply CLAHE for local contrast enhancement. 

o Denoise images to reduce artifacts. 

o Perform gamma correction for brightness 
normalization. 

o Convert grayscale images to RGB format. 

5. Data Balancing with SMOTE: 

o Use SMOTE to synthetically oversample IDC-
positive class. 

o Balance both classes to ~140,000 samples each. 

6. Split Dataset:  

o Divide data into Train (80%), Validation (10%), and 
Test (10%) sets. 

o Shuffle and stratify samples for balanced 

representation. 
7. Encode Labels: 

o Apply one-hot encoding for binary classification (IDC 

= [0,1], non-IDC = [1,0]). 
8. Model Building (ResNet50V2): 

o Load pretrained ResNet50V2 with ImageNet weights. 

o Customize model: Add GlobalAveragePooling2D, 

Dense(256), Dense(128), and final Dense(2) with 
sigmoid. 

o Compile with Adam optimizer and categorical cross-

entropy loss. 
9. Model Training: 

o Train model on training set for 10 epochs. 

o Use validation data for monitoring accuracy and loss. 

o Implement early stopping to prevent overfitting.  

10. Model Evaluation: 

o Evaluate performance on test set. 

o Compute Accuracy, Precision, Recall, F1-Score. 

o Generate confusion matrix, classification report, and 

ROC curve. 

o Visualize prediction outcomes on sample test images 

11. Ablation Study: 

o Modify architectural parameters: remove dense layer, 
change pooling, switch optimizer. 

o Compare performance metrics across configurations. 

12. Comparative Analysis: 

o Compare ResNet50V2 against CNN, CNN-GRU, 
DenseNet121. 

o Tabulate accuracy, precision, recall, and F1-score 

results.  
 

IV. RESULT ANALYSIS AND DISCUSSION 

The findings of the suggested model for the DL model-
based categorization of breast cancer are presented in this 
section. This research was conducted and evaluated in an 
experimental environment using a system equipped with an 
Intel Core i5-8250U CPU at 1.8 GHz, 12 GB of RAM, and 

running Windows 10 Professional 64-bit. Python 3 was used 
to implement the DL models for IDC classification. The study 
also includes a comparative study of several models, including 
CNN, CNN-GRU, DenseNet-121, and the proposed 
ResNet50V2, using the Breast Histopathology Images dataset.  

A. Experiment results  

This section presents the experimental outcomes of the 
proposed ResNet50V2 model for IDC classification using the 
Breast Histopathology Images dataset. Table II highlights the 
model's effectiveness in accurately identifying cancerous and 
non-cancerous tissue through key performance metrics. 

TABLE II.  RESULTS OF THE RESNET50V2 MODEL ON BREAST 

HISTOPATHOLOGY IMAGES DATASET FOR IDC CLASSIFICATION 

Matrix ResNet50V2 Model 

Accuracy 0.8852 

Precision 0.8847 

Recall 0.8859 

F1-Score 0.8853 

 

Fig. 8. ResNet50V2 Model Performance on IDC Breast Cancer dataset 

The bar chart presents the ResNet50V2 model’s 
performance on the Breast Histopathology Images dataset for 
IDC classification as shown in Figure 8 and Table II. The 
model shows consistent and high evaluation metrics with 
88.52% accuracy, 88.47% precision, 88.59% recall, and an 
F1-score of 88.53%, indicating effective and reliable 
classification performance with minimal variance among the 
metrics. For Breast Histopathology Images dataset, the 
classification outcomes is according to IDC or non-IDC patch. 

 

Fig. 9. Accuracy and Loss Curve of ResNet50V2 Model 

The ResNet50V2 model's training and validation 
performance across 10 epochs are shown in Figure 9. The 
training accuracy steadily increases, ultimately reaching a 
high of 98.60%, while the validation accuracy stabilizes 
around 88.52%, indicating strong learning on the training data 
but limited generalization. Similarly, after epoch 2, the 
validation loss rises to 0.4507 and peaks close to epoch 8, 
whereas the training loss sharply declines to 0.0376, 
indicating a widening difference between training and 
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0.8847

0.8859
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0.8845
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Accuracy Precision Recall F1-Score

IN
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validation measures. This overfitting is made evident by this 
divergence, in which the model is overfitting the training data 
at the expense of its performance on unseen data. 

 

Fig. 10. Confusion matrix of ResNet50V2 Model 

A Confusion Matrix, which is presented in Figure 10, 
shows that the ResNet50V2 model is capable of classifying 
samples of breast cancer: IDC. The model was right in its 
classification of 12,424 Class 0 and 12,444 Class 1. 
Nevertheless, it wrongly categorized 1,622 samples of Class 0 
as Class 1 and 1,603 Class 1 as Class 0. The fact that the ratio 
between TP and TN is almost equal to 1 suggests that the 
model has a high and stable classification capability, has low 
FP and FN rates, which indicates that the model is effective 
and reliable in separating cancerous and non-cancerous 
samples. 

 

Fig. 11. ResNet50V2 Model Classification Report 

Figure 11 displays the ResNet50V2 model's classification 
performance, with a balanced precision, recall and F1scores 
of 0.89 in Class 0 and Class 1. The algorithm is both consistent 
and effective at distinguishing between malignant and non-
cancerous cases, with a general acc of 89%. In the case of 
Breast Histopathology Images dataset, the classification 
outcomes is based on IDC or non-IDC patch. 

 

Fig. 12. ROC analysis ResNet50V2 Model 

Figure 12 shows that the ResNet50V2 model analyzed by 
the ROC performs well in classification. The ROC curve 

indicates high TPR across all FPR, and it is strongly tilted 
towards the upper-left corner. The AUC stands at 0.95, Which 
indicates that the model's differentiation between the positive 
and negative classes is effective. The shape of the curve and 
high AUC score of the model indicate the effectiveness and 
strength of the model in the IDC Breast Cancer cases and 
hence is very effective and reliable in binary classification in 
medical imaging.  

 

Fig. 13. Prediction Images of ResNet50V2 Model 

Figure 13 represents the visual prediction results obtained 
by the ResNet50V2 model on the histopathological images of 
IDC breast cancer, detailing different results in classification. 
The figure contains TP, TN, FP, and FN, and the labels of 
them show ground truth and model predictions. The majority 
of the predictions are consistent with the actual labels, 
particularly of positive cases, meaning that the model is rather 
reliable. Some misclassifications are found (marked in red), 
indicating some difficulty in some difficult or ambiguous 
tissue structures. This graphical interpretation supports the 
efficiency of the model in practical image classification works 
as well as underlines the necessity of further optimization or 
augmentation procedures to decrease the quantity of incorrect 
forecasts and enhance this model's overall diagnostic 
performance in the most important medical imaging 
procedures. 

B. Ablation Study 

The ablation study inspects the effect of given 
architectural and training manipulations on the ResNet50V2 
model's performance with the dataset of Breast 
Histopathology Images. The study endeavors to comprehend 
the impact of components of the model, like dense layers, 
pooling strategies, optimizers and activation functions, on 
model behaviour and generalization. Strauss curves of 
accuracy and loss of every configuration indicate training 
dynamics, stability and possible overfitting. This methodical 
assessment give an idea of the most promising design options 
which would help to optimize and refine CNN models to be 
more reliable and applicable in real-life medical imaging 
scenarios. 

TABLE III.  ABLATION STUDY RESULTS WITH DIFFERENT PARAMETERS 

AND LAYERS OF RESNET50V2 MODEL ON THE TEST SET 

Methods Accuracy Precision Recall F1-Score 

ResNet50V2 + No 

Dense (128)  

89 89 89 89 

ResNet50V2 + 
GlobalMaxPooling 

87 88 87 87 

ResNet50V2 + SGD 

Optimizer 

87 88 87 87 

ResNet50V2 + Only 
Softmax 

89 89 89 89 

Table III presents the results of the ablation study 
evaluating the performance of the ResNet50V2 model across 
different architectural and optimization configurations. The 
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baseline setup with the Dense (128) layer removed and the one 
with only the SoftMax layer yielded the best acc, prec, rec, 
and F1 of 89%. In contrast, Global Max Pooling and SGD 
optimizer had a minimal impact on the metrics, and the 
accuracy and recall went down to 87%, indicating that these 
changes might restrict the ability of the model to learn intricate 
spatial features or to be effective. Altogether, the ablation 
analysis indicates that, although simple structures can also 
achieve similar performance, the selection of architectures and 
optimizers is essential to ensure the best model generalization 
and predictive accuracy.  

 

Fig. 14. Accuracy and Loss Curves of ResNet50V2 Model with No Dense 

(128) 

 

Fig. 15. Accuracy and Loss Curves of ResNet50V2 Model with Global Max 

Pooling. 

 

Fig. 16. Accuracy and Loss Curves of ResNet50V2 Model with SGD 

Optimizer  

 

Fig. 17. Accuracy and Loss Curves of ResNet50V2 Model with Only 

SoftMax with accuracy 

Figures 14 to 17 illustrate the comparative analysis of 
diverse architectural and optimization changes made to the 
ResNet50V2 model. Figure 14 removes the Dense (128) layer 
and the training accuracy of the model is 98.59% with a 
slightly improved validation accuracy of 89.03% considering 
that simplification of the model can increase the 
generalization. Figure 15 demonstrates that the application of 
Global Max Pooling leads to a slight decline in performance, 
and validation accuracy is 87.49% and higher training loss 
(0.0468), which means that the feature extraction is less 
effective. Figure 16 also shows that when using SGD 
optimizer, performance decreases further with the weakest 
validation accuracy (87.15%) and the highest validation loss 
(0.5316) similar to the low optimization ability of Adam. In 
the meantime, Figure 17 shows that the highest validation 
accuracy (89.11%) and similar training results are attained by 
a single Softmax layer, which suggests that a more simplistic 
output setup can be used to successfully perform 
classification. The findings provide evidence of the 
significance of the architectural and optimization decisions, 
and the dense layer and Adam optimizer have a beneficial 
impact on the training and generalization of balanced training. 

C. Comparative Analysis  

The comparison of the important demonstration indicators 
for the proposed ResNet50V2 model and the other deep 
learning models in the IDC breast histopathology dataset are 
listed in Table IV. According to its acc, pre, rec, and F1, the 
ResNet50v2 model outperforms the baseline models in 
detecting IDC-positive and IDC-negative instances. 

TABLE IV.  COMPARATIVE ANALYSIS OF DEEP LEARNING MODELS FOR IDC BREAST CANCER CLASSIFICATION  

Reference Models Accuracy Precision Recall F1-Score 

Proposed Model ResNet50V2  88.52 88.47 88.59 88.53 

Base Paper[29] CNN Model 3 87 86 76 85 

[30] CNN-GRU 86.21 85 84.60 86 

[31] CNN 83 70 82 75 

[32] DenseNet-121 79.64 79.97 79.40 79.68 

Table IV presents the comparative analysis of the 
suggested ResNet50V2 model and a number of baseline 
models were employed in the IDC categorization. The 
proposed model has the highest total accuracy of 88.52%, and 
balanced precision (88.47%), recall (88.59%), and the F1-
score (88.53%) values. ResNet50V2 has better performance 
in all measures than CNN Model 3 (87%) and CNN-GRU 
(86.21%). Conventional CNN and DenseNet-121 seems to be 
worse in their results, with the lowest accuracy by DenseNet-
121 (79.64%). This data illustrations how well the proposed 

ResNet50V2 architecture performs in classifying images of 
breast cancer. 

This research is able to show a strong deep learning 
pipeline of IDC breast cancer identification based on 
histopathology images with high performance of 88.52. The 
most outstanding is probably the implementation of a 
complete preprocessing pipeline with tissue filtering, 
Hematoxylin channel enhancement, and image denoising, 
which has greatly enhanced the quality of images and 
diagnostic accuracy. The fact that a fully fine-tuned 
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ResNet50V2 model was used with a comprehensive ablation 
experiment indicates the strengths of the architecture and its 
best settings in detecting IDC. The inclusion of SMOTE to 
solve the problem of class imbalance provides fairness and 
better generalization of the model. The proposed approach 
demonstrates better results compared to the current models, 
like CNN, CNN-GRU, and DenseNet121, which proves its 
clinical relevance. This unified framework does not only 
increase the accuracy of classification, it also forms the basis 
of the interpretable, scalable, and automated diagnostic 
systems in digital pathology.  

D. Limitations and Future Work 

Despite the promising outcomes achieved by the proposed 
ResNet50V2-based model for IDC classification, this study 
has certain limitations. It is also limited to one dataset, and this 
fact might not be applicable to different imaging settings and 
patients. Although SMOTE can be used to deal with class 
imbalance, synthetic patterns are introduced, which do not 
necessarily reflect actual histological variations. Moreover, 
the model is not yet interpretable which is an important feature 
of the model to be adopted in clinical settings. Future 
directions will be to increase validation on multi-center and 
heterogeneous data, incorporate XAI procedures, such as 
Grad-CAM or SHAP to improve transparency, and hybrid 
models combining deep and traditional machine learning 
classifier (RF or SVM) to improve performance and 
interpretation. Furthermore, the idea of creating lightweight or 
compressed model versions will be discussed to be able to use 
them in clinical environment with limited resources.  

V. CONCLUSION 

In Breast cancer, early identification and treatment are 
critical for positive outcomes. Breast cancer is a disease 
originating in the breast cells and can be regarded as one of 
the first causes of death among women. The most common 
and aggressive type of breast cancer is Invasive Ductal 
Carcinoma (IDC) and this type of cancer necessitates early 
and accurate diagnosis in order to be treated. The study used 
the collection of breast histopathology images to examine 
automated IDC categorization using DL algorithms. The 
ResNet50V2 architecture was the most successful in the 
performance with an acc of 88.52% and balanced values of 
pre, rec, and F1. A study of ablation also indicated the 
importance of a wide range of architectural and training 
parameters on the model effectiveness. The high performance 
and strength of ResNet50V2 were demonstrated by 
comparative analysis with the baseline models, including 
CNN, CNN-GRU, and DenseNet-121. On the whole, the 
paper presents the promise of DL and the use of ResNet50V2 
specifically in helping histopathological IDC detection and 
provide better diagnostic processes in the field of medical 
imaging. However, compared to traditional DL approaches, 
transfer learning performs better in small datasets, making it 
the preferable method. This approach will significantly 
demonstrate that technology can transform people's lives and 
might be utilized in the medical profession to identify tumors 
early and accurately. Future work will involve applying 
advanced regularization methods, enhancing model 
generalization and reducing overfitting with the use of 
ensemble learning and substantial data augmentation. 
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