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Abstract—Quality assurance in many fields relies on the
ability to detect defects. This is especially true in the
manufacturing, construction, electronics, and medical
diagnostics sectors. As deep learning becomes more prevalent in
industrial inspection systems, its revolutionary effect on defect
identification is being felt in many different fields. This article
summaries current methods for detecting defects in
manufacturing, infrastructure, and biomedical imaging using
deep learning. It examines methods such as CNNs, generative
models, attention mechanisms, and emerging transformer and
diffusion frameworks, focusing on their effectiveness in surface
anomaly detection. The paper categorizes approaches into
supervised, unsupervised, and semi-supervised models,
examining their suitability under different data conditions and
deployment scenarios. It also highlights key implementation
challenges, including data imbalance, annotation complexity,
dataset variability, and generalization across domains. There
are also important items like the quality of the dataset, model
interpretability, scalability, and real-time performance that are
mentioned to ensure the successful implementation of Al in real-
world scenarios. Future directions include the emergent
technologies of domain-adaptive learning, explainable AI and
the deployment of Al at the edge, where it could be applied to
real-time inspection. The review summarizes the recent
advances and highlights the methodologies to enhance the
transparency and reliability of deep learning-based defect
detection and the emergence of intelligent and high-
performance adaptive inspection devices in industries.

Keywords—Deep Learning, Defect Detection, Convolutional
Neural Networks (CNN), Generative Models, Quality Inspection,
Smart Manufacturing.

I. INTRODUCTION

In industrial quality control, the detection of defects is an
important process. Manual inspections with special tools are
traditionally achieved by experts in order to detect defects [1].
But the drawback of this method is that it is time-consuming,
labor-intensive, and it is also prone to fatigue-related errors,
particularly in settings that need constant vigilance [2].
Consequently, the trend has been to move to Infrastructure
Automated Defect Detection (IADD), which involves the
application of deep learning models to increase speed,
consistency and reliability in defect detection.

Deep learning (DL), a subfield of machine learning (ML),
has become a prominent tool for automating the process of
defect detection in particular industrial fields over the past
several years [3]. As opposed to traditional computer vision
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techniques, which are based on handcrafted features, DL
models, and, in particular, Convolutional Neural Networks
(CNNs) have the ability to learn discriminative features
without relying on handcrafted features and explore the raw
data automatically [4]. This gives them a high degree of
effectiveness in the detection of delicate and complex flaws in
structural systems and manufactured parts. In addition to
CNNs [5]. The recent innovations, including generative
models, attention-based models, hybrid frameworks, and
diffusion-based models, have boosted the potential of DL and
given it a more reliable opportunity to perform well under
complex [6] real-life conditions, which are highly diverse.

In high-tech manufacturing, assembly and test of
semiconductors (SAT), Automated Optical Inspection (AOI)
is the norm in yield management. The huge amount of defect
images generated by the AOI systems is usually processed
offline by human operators, and is time-consuming and prone
to error due to visual fatigue. To meet this, Automated Defect
Classification (ADC) tools are implemented in Industry 4.0 to
cut down on manual efforts and operational expenses in high-
volume manufacturing (HVM).

Despite these advancements, one of the primary
challenges in deploying DL models for defect detection is the
requirement for large and diverse datasets. In practice, it may
be quite challenging to collect a number of images of defective
products, especially in the case of rare defective products or
types of defects that are emerging [7][8]. This constraint poses
a major impediment to training complex DL architectures,
e.g., Vision Transformers (ViTs), that require large data
volumes in order to work effectively.

In conclusion, even though DL has the potential to
transform the whole field of automated defect detection in
industries, many obstacles still exist, particularly in terms of
data availability, generalization, and real-time deployment.
Current research is still trying to tackle these problems by
optimizing the models, extending the available data, and
transferring the results of one domain to another.

A. Structure of the Paper

The structure of this paper is as follows: Section II presents
key DL techniques used for defect detection. Section III
discusses major application domains and industrial use cases.
Section IV outlines data-related challenges and future research
opportunities. Sections V and VI present the summary of the
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literature and conclude with
advancements in the field.

insights and potential

II. DEEP LEARNING TECHNIQUES FOR DEFECT DETECTION

DL has digitalized defect detection because it allows
automatic feature extraction, robust pattern recognition, and
eases the deployment process into various industrial fields.
This section reviews important DL structures, CNNs, AEs,
and GANs that have proved to be very successful in detecting
and localizing surface anomalies. All the models have
different contributions. CNNs give the possibility of high-
throughput classification, AEs allow the localization of
defects in an unsupervised manner, and GANs allow data
diversity and anomaly detection to be enhanced [9]. These
basic concepts, architectural differences, uses, and constraints
provide a comprehensive understanding of how they can be
used to enhance defect detection capabilities and shape future
research in the sphere of model optimization and hybrid
implementation.

A. Convolutional Neural Networks (CNNs)-Based Models

CNNs are DL models that handle data with a grid layout,
such as pictures. Their architecture mimics that of the animal
visual cortex, allowing them to effortlessly and adaptively
learn feature hierarchies ranging from simple to complex
patterns. Because users must manually create defect features
using traditional surface defect detection methods, their
capacity to handle complex features may be limited [10]. The
characteristics that influence defect identification, however,
may be automatically identified using CNNs.

Key characteristics of CNN-based models in defect
detection:

e Feature Extraction: The process of identifying and
extracting key physical and visual attributes from
images of produce. These features, such as colour,
texture, shape, and size, serve as inputs for ML
classifiers, enabling accurate categorization of produce
based on its quality.

o Translation invariance: The ability to detect defects
regardless of their position within the image, ensuring
consistent and reliable performance in dynamic
inspection environments.

e Real-time application: Leveraging advanced GPUs
and specialized DL frameworks, CNNs are capable of
processing images at near real-time speeds, facilitating
high-throughput and efficient industrial inspection
[11].

Common CNN Architectures Used in Defect Detection:

e Alex Net and VGG Net: The most well-known
engineering tool used to manage DL is VGG Net. In
any case, it is similar to Alex Net’s 3 x 3 convolutions
with more channels.

e ResNet: Listens to the issue of the vanishing gradient
and allows deeper networks, which enhances defect
localization and segmentation.

e Mobile Net and Efficient Net: Low-weight models
applicable to an edge deployment for mobile on-device
inspection.
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Fig. 1. Convolutional neural network (CNN) architecture and the training
process

A challenge related to CNNs is that they are sensitive to
variations in illumination and easily suffer from overfitting
with small datasets, and poor generalizability to different
surface types [12]. To address these shortcomings, new
research marries CNNs and transfer learning, data
augmentation and domain adaptation (as shown in Figure 1).
In addition to that, hybrid CNN-based models integrating
conventional image processing and DL are promising in
improving accuracy and flexibility.

B. Autoencoders (AE) and Variants

An autoencoder (AE) is a common DL model that is
intended for unsupervised feature representation learning of
data. Strong representation learning capacity, straightforward
framework, and ease of training are among AE's benefits. In
the field of FDD, it has been frequently employed.
Additionally, a variety of AE-based variations have been
created and used in the FDD area to get around different data
qualities or to make the learnt feature representations show
distinct beneficial aspects [13]. RNN and CNN are two
examples of DL modules that may be used in lieu of the
encoder-decoder framework's encoder and decoder parts to
extract complicated data characteristics.

Specific AE Variants in Defect Detection:

e Convolutional autoencoder (CAE): These methods
circumvent the computational expense disadvantage of
picture denoising by presenting the problem inside the
statistical framework of regression, which results in a
more manageable calculation [14]. Therefore,
compared to density estimation, they provide for more
representational capacity.

¢ Denoising Autoencoders (DAEs): It is a unique kind
of autoencoder that must learn the features in order to
regenerate the complete samples from noisy inputs
[15]. The suggested approach fixes the faulty PCBs in
addition to identifying and locating potential flaws.

e Memory-Augmented Autoencoders: It was
suggested to address the issue of partial defect
reconstruction [16]. Memory-augmented autoencoder-
based techniques frequently have trouble restoring
complicated flaws and rely on restoring defects for
inspection.

C. Generative Adversarial Networks (GANs)

GAN comprise a generator network and a discriminator
network that are both taught through competition. The
generator's job is to mimic the training data as precisely as
possible, while the discriminator's is to tell the difference
between the two. GANs may be specially trained with a focus
on anomaly detection in order to produce examples from the
minority class or the anomalies. By exposing the GANs to a
balanced ratio of normal and anomalous events during
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training, they can learn to produce synthetic data that more
precisely reflects both classes. Figure 2 illustrates the
proposed Magna-Defect-GAN and a deep generative model
where an image is encoded and combined with a latent noise
vector, mask embedding, and guide vector. The decoder
reconstructs a defect-enhanced output, aiding in anomaly
detection or image restoration tasks.
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Fig. 2. Structure of the proposed Magna-Defect-GAN

How GANSs are used in defect detection is as follows:

e Data Augmentation: A defect detection model's
training dataset can be enhanced by creating synthetic
pictures with GANs [17]. The training dataset may be
made more diverse and the model's capacity for
generalization enhanced by including synthetic
images.

e Unsupervised Anomaly Detection: GANs are trained
on defect-free images so that the generator learns to
reconstruct only normal patterns. When an image with
defects is passed through the generator, the defective
regions are not accurately reconstructed, resulting in
noticeable differences between the input and output
[18]. These discrepancies, measured using residual
computation methods, are quantified as anomaly
scores to effectively identify and localize defects.

The two networks that make up the fundamental
architecture of GANs pursue opposing optimization
objectives with respect to a loss function. Combining the
DiffAugment approach with the StyleGAN2 architecture.

e In terms of perceived picture quality and current
distribution quality measures, StyleGAN2 is an
enhanced GAN network.

o DiffAugment is a simple tool that increases GAN data
efficiency by applying differentiable augmentations to
both real and fake samples.

This combination improves convergence and stabilizes
training, in contrast to other techniques that alter the
distribution of real images by directly enriching the training
data [19].

III. APPLICATIONS, DOMAINS, AND USE CASES

In many different sectors, defect detection is essential to
guaranteeing performance, safety, and dependability. The
application of DL approaches has greatly improved the
capacity to identify, categories, and pinpoint flaws in fields
including healthcare, civil infrastructure, and industrial
manufacture. These methods have outperformed conventional
techniques by leveraging feature extraction, image
classification, and anomaly detection capabilities. This section
explores domain-specific applications, highlighting how Al-
driven tools are revolutionizing structural monitoring, medical
diagnostics, and automated inspection systems with greater
accuracy and adaptability.
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A. Defect Detection in Industrial Manufacturing

In general, a defect is described as an area or absence that
deviates from a typical sample. A number of issues, such as
subpar working conditions and insufficient technology,
influence the quality of manufactured goods throughout the
production process [20]. Defect identification used to be done
by professionals. The significant impact of human subjectivity
on the detection findings was one of the main causes of this.
Much work has been spent on surface defect detection using
conventional techniques. On the basis of the product's
attributes, three conventional methods can be identified: those
based on texture, colour, and shape.

Defect detection has seen DL's meteoric rise in popularity
as a result of its ability to improve the efficiency and accuracy
of the process. Specialized methods have been employed in a
number of investigations to identify surface imperfections.
Using a vector texture feature and a percentage of the colour
histogram feature, the colour-based feature approach
classifies picture blocks to identify surface flaws in wood [21].
Recent uses of ML-based vision algorithms to identify surface
flaws in industrial items have been divided into three groups
according to texture, colour, and form characteristics:

o Texture-based: Gray level co-occurrence matrix,
Mathematical morphological, Fractal model, Gabor
filter

e Colour-based: Bivariate colour histograms and colour
coherence vectors are useful tools for identifying and
locating flaws.

¢ Shaped-based: The use of Fourier spectra between the
template and the inspection picture allows for a
comparison of all the Defects, and it can find a range
of non-repeating patterns in the electronics industry,
even ones as little as one pixel wide.
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Fig. 3. Compares normal samples with defective samples of industrial
products

Defective samples and normal samples of industrial goods
are contrasted (as seen in Figure 3). The top row contains good
samples, while the second, third, and fourth rows contain
inferior samples. Below the image, three types of defects are
listed; the first, second, third, and fourth columns display
wood, grid, capsule, leather, and bill, in that order.

B. Infrastructure and Construction Monitoring

In order to evaluate the safety and integrity of civil
infrastructure, structural health monitoring, or SHM,
continually analyzes data from embedded sensors. The
primary objectives of SHM systems are to monitor structural
conditions, detect damage or anomalies, and evaluate long-
term performance [22]. As a multidisciplinary and evolving
technology, SHM enables intelligent maintenance strategies,
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contributing  significantly to the modernization and
sustainability of infrastructure systems [23]. Notably, ML
techniques have been shown to offer trustworthy solutions to
issues related to identifying infrastructure flaws,
outperforming conventional techniques in the areas of
precision, automation, speed, adaptability, and scalability.

One prominent example is the municipal drainage system,
a critical yet often overlooked component of urban
infrastructure. Closed-circuit television (CCTV) has become
the standard for inspecting sewer networks. However, the vast
volume of CCTV footage spanning thousands of kilometers of
underground pipelines makes manual analysis labour-
intensive and time-consuming, often requiring large teams of
trained personnel [24]. In order to overcome this difficulty,
deep learning-based frameworks have been suggested to
enable real-time defect detection in an automated way. They
collaborate the convolutional neural networks (CNNs) and
other advanced models to detect the structural deformities in
the sewer pipes directly based on CCTV images, which can
save a lot of time on the inspection process and at the same
time improve both the accuracy and the repeatability of the
results collected.

C. Healthcare and Biomedical Imaging

Electronic health records (EHRs), computerized physician
order entry (CPOE), and clinical decision support systems
(CDSS) are current healthcare essentials [25]. Such systems
simplify the work processes, minimize the number of medical
errors, and improve patient outcomes by delivering the right
information at the right time. Nonetheless, the importance of
and the complexity of clinical software demand high
requirements of the reliability and quality of the software. The
impact of defects in this kind of software is very serious, and
it may include the safety of patients, non-conformity to
regulatory standards, and significant financial losses.

Their conventional fault-finding methods, such as manual
reviews of code and standard rule-based static analysis, are not
always reliable for detecting subtle and context-sensitive
faults in clinical apps, in most situations. This limitation is
compounded by the intricate dependencies, domain-specific
logic, and frequent updates characteristic of healthcare
software [21]. To address these challenges, predictive defect
detection methods using machine learning have gained
traction, enabling the early identification of high-risk modules
based on historical data and software metrics.

The model-based methods detect faults in photos with
little to no variance. Since there are a variety of uncertainties
in industrial settings about the severity of errors in their forms
and sizes, it is essential to create techniques that can adjust to
these vast variances. Because learning-based approaches are
more resilient to variance, they offer a superior substitute for
preprogrammed feature identification techniques. Such
resilience is possible with traditional ML techniques for
regression and classification. These learning-based
approaches make use of NN, DT, KNN, SVM, and NB. These
methods train the expected faults by taking into account the
statistical variability of the defects on the images.

IV. CHALLENGES AND FUTURE RESEARCH DIRECTIONS

Even though significant improvements have been
achieved in the field of DL in defect detection, there are
several urgent issues that prevent its large-scale use in
industry. The critical issues range between data-related
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challenges, including data imbalance, the complexity of
annotations and data quality, generalization and model
robustness issues and the increased need to explain the
predictions and to trust them. Such issues limit both model
performance and scalability, as well as reliability and user
adoption. These barriers need to be solved in order to make
defect detection systems resilient, transparent, and adaptable.
This part is critical about these limitations as well as stating
possible ways of future research to mitigate these and increase
efficiency of the systems as including:

A. Data Challenges: Imbalance, Annotation, and Quality

One of the biggest obstacles to developing reliable and
transferable DL models for defect identification is the amount
of data that is currently available. One of the biggest issues is
class imbalance, which occurs when there are more normal
samples than defective ones. Models' sensitivity and reliability
in real-world applications might be compromised due to
imbalanced representations caused by this class imbalance,
which fail to detect infrequent but critical errors.

The next obstacle is the complexity of the annotation.
Specific knowledge of the domain is usually necessary to
create good labels on type of defects, which makes the
annotation task error-prone, resource-intensive, and time-
consuming. Additionally, inconsistencies in labelling across
different datasets introduce noise, which adversely affects the
training process and diminishes the model’s robustness and
generalization capability [26].

The quality of training data is equally vital, especially in
applications like sewer or infrastructure defect detection,
where CNN-based models rely heavily on the fidelity and
representativeness of input data. Poor image resolution,
occlusions, and environmental variability can degrade model
performance [27]. To address these issues effectively, several
steps are recommended.

e It is especially important to examine the associated
data errors.

e To specify the necessary steps for removing the
mistake sources and cleaning up the inaccurate data.

e Prioritize the different data mistakes, take the
appropriate action, and move them to the appropriate
project plan.

Overall, addressing these data-centric issues is
foundational for building scalable and reliable deep learning
systems for defect detection in diverse industrial contexts.

B. Generalization and Model Robustness

Models can learn concepts instead of exact rules thanks to
DL's generalization capabilities. As an example, classifiers
that have been trained on ImageNet's 14 million pictures can
anticipate which subjects belong to which classes in
unfamiliar settings. The goal of training a model to generalize
is not to find laws but rather to teach it broad ideas about what
makes one type of object different from another, such as a bird
from an aeroplane. When inspecting for defects, it is common
for the background image to be the same, and the defects
themselves may be similar in type or location. These cases
increase the likelihood that models will learn shortcuts that are
either unrelated to the picture defect or do not apply to newly
discovered faults [28]. This study utilizes a dataset that
incorporates a diverse array of external data, including fault
types applicable in various contexts, to train a machine
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learning model that addresses the over-fitting problem in
defect inspection.

e In order to enhance model generalization, data
augmentation techniques, including flips, rotations,
and color modifications, have been used to artificially
increase the variety of training data.

e Adversarial assaults, in which models are susceptible
to inputs that are purposefully altered to produce
mistakes.

e Adversarial training has been implemented. To
increase resilience against these disturbances, this
method trains models on synthetic adversarial cases.

C. Explainability and Trustworthiness

Explainable Artificial Intelligence (XAI) sought to
increase machine learning models' interpretability,
transparency, and understandability in order to foster
confidence in Al systems and guarantee that judgments made
by AI could be rationalized and explained. Different
approaches can be taken to improve the machine learning
model's explainability; the choice depends on the data, the
type of explanation, and the ML algorithm used:

e A method for determining the relative significance of
each feature in a machine learning model is called
permutation feature importance. It reveals the extent to
which the performance of a model would be affected
by randomly shuffling the values of a specific feature
while keeping the values of other features constant.

e LIME is a method for explaining specific predictions
that ML models make. It aspires to shed light on the
"black box" component of numerous complex models.

LIME provides an instance-specific local explanation for
"Trusting a prediction" by determining which input data
aspects significantly impact the prediction's outcome [29]. A
glass model, which is a simple and interpretable model, is
created by LIME to mimic the behaviour of the sophisticated
model locally around the instance of interest. This model takes
linear regression as an example.

D. Future Directions

Despite significant progress in DL-based material defect
detection, current approaches still struggle to meet the
demanding requirements of practical industrial applications,
particularly in terms of cost-effectiveness, scalability,
robustness, and real-time performance. Many systems find it
difficult to maintain consistent performance across a variety
of operational settings, although contemporary machine
learning algorithms have greatly increased detection accuracy.
The creation of flexible, interpretable, and resource-efficient
models should be the main goal of future research in order to
overcome these difficulties. To advance defect detection
technology towards dependable and scalable industrial
deployment, this section lists the main obstacles and possible
paths forward. Additionally, in order to better reflect real-
world fault scenarios, emphasis should be placed on
developing vast, diversified, and high-quality datasets.
Furthermore, combining domain expertise with learning
informed by physics may improve model generalization and
usefulness.

V. LITERATURE REVIEW

This section reviews recent studies on DL approaches for
defect detection, focusing on segmentation, generative
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models, and hybrid architectures. Table I summarizes each
study’s methodology, key contributions, limitations, and
future directions, offering insights into scalable, accurate, and
efficient detection systems.

Rahman et al. (2025) provide a thorough analysis that fills
this gap by combining state-of-the-art DL approaches with
conventional segmentation techniques. As Al advances,
especially in picture segmentation, it challenges the efficiency
and accuracy of traditional human inspection methods. This
article provides a comprehensive study of methodological
improvements, application breadth, and developing trends.
The integration of hybrid techniques, DL models, and
innovations like lightweight structures and attention
mechanisms is emphasized. To improve model scalability,
robustness, and flexibility, the analysis also identifies
important research issues and suggests future lines of inquiry.
This systematic study is a crucial resource for defect
identification using image segmentation, as it fills in
knowledge gaps and offers practical insights for both
academia and industry [30].

Kohli and Chhabra (2025) describe the function of DL
approaches in outlier classification and feature extraction
across application areas. DL technologies have become a
viable substitute for traditional ML techniques because of
their ability to model features, evaluate detection rates, and
mimic cognitive growth. The most recent experimental
research methods and standard datasets are thoroughly
examined. The methods used, performance metrics, datasets,
difficulties encountered, and application areas all demonstrate
the scholarly achievements over the last ten years. The study
concludes by outlining the necessity for hybrid models,
cutting-edge technology, and enhanced interpretability as
future research avenues [31].

He et al. (2024) provide a comprehensive review of the
current literature on surface defect inspection methods
proposed for the years 2022-2024. To begin, these methods
can be categorized into four sets, each with its own focus on
generative models: multi-models, generative adversarial
networks (GANs), diffusion models (DMs), and variational
auto-encoders (VAEs). Part two delves into the current
landscape of generative model surface defect inspection
research from four angles: learning model, inspection
problem, detection aim, and sample production. Presenting a
comparative comparison of generative model-based defect
inspection techniques follows, followed by a discussion of the
available datasets and evaluation criteria commonly used for
surface defect assessment. The paper finishes by discussing
the challenges that generative model-based defect inspection
systems are now facing and by proposing areas for further
research [32].

Ma et al. (2024) provide a comprehensive overview of the
development of industrial defect detection methods based on
supervised and unsupervised algorithms, address critical
difficulties, and outline future possibilities. Additionally, it
contains evaluation metrics and standard datasets utilized for
industrial product defect detection. To overcome these
obstacles and improve fault detection, several strategies have
been put forth. to thoroughly examine the most recent
advancements in industrial product fault detection methods
based on DL. It draws attention to the possibility of enhancing
defect detection systems' precision, speed, and dependability
in industrial settings. Using DL-based object detection
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algorithms is one of the main goals of industrial product fault
detection [33].

Jiang et al. (2023) provide a transformer network for
surface defect segmentation that uses multi-stage CNN feature
insertion. This structure is similar to UNet and is called CIN
Former. Efficiently and simply, CINFormer provides a feature
integration method that incorporates the input picture's multi-
level CNN characteristics into the encoder's transformer
network at different levels. This can preserve the advantages
of CNN's ability to capture fine details and the transformer's
ability to suppress background noise, both of which help with
precise fault identification. Additionally, CIN Former
provides a Top-K self-attention module that zeroes in on
tokens that provide more critical information regarding the
defects, thereby mitigating the impact of the duplicated
backdrop. Trials on the surface defect datasets DAGM 2007,
Magnetic tile, and NEU show that the proposed CIN Former
performs at a state-of-the-art level when it comes to defect
identification [34].

Wang et al. (2023) The Defect Transformer (DefT), a
successful hybrid transformer design for surface defect

detection, which uses convolutional neural networks (CNNs)
and transformers as one model to capture both local and non-
local interactions. To be more specific, the encoder module
employs a convolutional stem block to initially store more
complex spatial information. After that, they use the patch
aggregation blocks to make a multi-scale representation with
four levels of hierarchy. After each of these blocks, there is a
series of DefT blocks. These blocks help with feature
transformation and learning more location information, model
multi-scale global contextual relationships with good
computational efficiency, and encode local positions. Another
block uses a lightweight multi-pooling self-attention. They
conclude with a simple yet effective decoder module that
gradually recovers spatial data from the encoder's skip
connections [35].

Table I summarizes key studies on deep learning-based
defect detection, outlining model types, application domains,
datasets used, evaluation metrics, and performance outcomes,
while also highlighting existing limitations and future research
directions for improved defect identification accuracy.

TABLE I. COMPARATIVE ANALYSIS OF RECENT STUDIES ON DEEP LEARNING-BASED DEFECT DETECTION TECHNIQUES

Reference Study On Approach Key Findings Challenges Future Direction
Rahman et | Image Systematic review | Holistic coverage of methods, | Scalability and | Enhance robustness,
al. (2025) segmentation integrating deep learning | datasets, and trends in | adaptability of models develop generalizable
for defect | models, hybrid techniques, | segmentation-based fault segmentation frameworks
detection and lightweight architectures | detection
Kohli et.al. | Outlier Comparative review of DL- | DL outperforms classical ML | Hardware constraints, | Develop hybrid models,
(2025) classification based feature extraction and | in feature learning and | interpretability issues focus on efficient and
using deep | classification detection accuracy explainable Al
learning
He et al. | Surface defect | Review of VAE, GAN, | Categorized and evaluated | Lack of robust learning | Improve  generalization,
(2024) detection with | Diffusion, and multi-model- | inspection models based on | with limited defect | refine multi-model fusion
generative based inspection systems learning type and dataset use samples approaches
models
Ma et al. | Industrial Survey on | Comprehensive trace of one- | High  variance  in | Boost speed and reliability;
(2024) product defect | supervised/unsupervised stage, two-stage, and | accuracy across | leverage domain adaptation
detection object detection algorithms unsupervised DL models datasets and conditions
Jiang et al. | Surface defect | CNN-transformer hybrid | Preserves  spatial  detail, | Balancing CNN-local | Broaden dataset
(2023) segmentation with Top-K self-attention suppresses background noise | and transformer-global | applicability, enhance real-
(CINFormer) for improved accuracy features time deployment
Wangetal. | Surface defect | Hybrid architecture | Achieves fine-grained spatial | Complexity in encoder- | Design lightweight,
(2023) detection combining CNN and | encoding with multi-scale | decoder integration energy-efficient detection
(DefT) transformer blocks global context architectures

VI. CONCLUSION AND FUTURE WORK

Exploring the evolution of DL in defect detection reveals
both significant progress and pressing limitations. Across
industrial domains, the integration of CNNs, GANs, and
hybrid DL models has elevated detection accuracy, yet key
technical and data-related challenges continue to hinder
broader adoption. Drawing from a wide spectrum of recent
developments, this review highlights how DL algorithms have
transformed defect detection tasks by enabling high precision
and automation. Although the current state is very impressive,
there are still concerns with data imbalance, generalization
gaps, and model explainability. To address these difficulties,
it will be necessary to use high-quality data, novel training
practices, and understandable Al practices. Also, the
application to industry is to be increased with the emphasis on
future studies on domain adaptation, real-time inference, and
trust-building mechanisms. With the growth of industries in
the direction of intelligent automation, DL will continue to
play a role in defect detection as long as the existing
limitations are methodically resolved with interdisciplinary
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innovation and strict validation. Such a balance between being
accurate, reliable and interpretable determines the future path.

Future research should concentrate on making accurate,
interpretable, and generalizable DL models that can be applied
to a wide range of defect types on different materials. It is
necessary to focus on the development of high-quality and
scale-annotated datasets and an enhanced real-time detection
capability. Furthermore, the approach that combines
lightweight networks, domain adaptation, and explainable Al
techniques can contribute to increased transparency of the
model and its industrial deployment and pave the way for
more intelligent and scalable defect detection systems.
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