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Abstract—Quality assurance in many fields relies on the 

ability to detect defects. This is especially true in the 

manufacturing, construction, electronics, and medical 

diagnostics sectors. As deep learning becomes more prevalent in 

industrial inspection systems, its revolutionary effect on defect 

identification is being felt in many different fields. This article 

summaries current methods for detecting defects in 

manufacturing, infrastructure, and biomedical imaging using 

deep learning. It examines methods such as CNNs, generative 

models, attention mechanisms, and emerging transformer and 

diffusion frameworks, focusing on their effectiveness in surface 

anomaly detection. The paper categorizes approaches into 

supervised, unsupervised, and semi-supervised models, 

examining their suitability under different data conditions and 

deployment scenarios. It also highlights key implementation 

challenges, including data imbalance, annotation complexity, 

dataset variability, and generalization across domains. There 

are also important items like the quality of the dataset, model 

interpretability, scalability, and real-time performance that are 

mentioned to ensure the successful implementation of AI in real-

world scenarios. Future directions include the emergent 

technologies of domain-adaptive learning, explainable AI and 

the deployment of AI at the edge, where it could be applied to 

real-time inspection. The review summarizes the recent 

advances and highlights the methodologies to enhance the 

transparency and reliability of deep learning-based defect 

detection and the emergence of intelligent and high-

performance adaptive inspection devices in industries. 

Keywords—Deep Learning, Defect Detection, Convolutional 

Neural Networks (CNN), Generative Models, Quality Inspection, 

Smart Manufacturing.  

I. INTRODUCTION 

In industrial quality control, the detection of defects is an 
important process. Manual inspections with special tools are 
traditionally achieved by experts in order to detect defects [1]. 
But the drawback of this method is that it is time-consuming, 
labor-intensive, and it is also prone to fatigue-related errors, 
particularly in settings that need constant vigilance [2]. 
Consequently, the trend has been to move to Infrastructure 
Automated Defect Detection (IADD), which involves the 
application of deep learning models to increase speed, 
consistency and reliability in defect detection. 

Deep learning (DL), a subfield of machine learning (ML), 
has become a prominent tool for automating the process of 
defect detection in particular industrial fields over the past 
several years [3]. As opposed to traditional computer vision 

techniques, which are based on handcrafted features, DL 
models, and, in particular, Convolutional Neural Networks 
(CNNs) have the ability to learn discriminative features 
without relying on handcrafted features and explore the raw 
data automatically [4]. This gives them a high degree of 
effectiveness in the detection of delicate and complex flaws in 
structural systems and manufactured parts. In addition to 
CNNs [5]. The recent innovations, including generative 
models, attention-based models, hybrid frameworks, and 
diffusion-based models, have boosted the potential of DL and 
given it a more reliable opportunity to perform well under 
complex [6] real-life conditions, which are highly diverse. 

In high-tech manufacturing, assembly and test of 
semiconductors (SAT), Automated Optical Inspection (AOI) 
is the norm in yield management. The huge amount of defect 
images generated by the AOI systems is usually processed 
offline by human operators, and is time-consuming and prone 
to error due to visual fatigue. To meet this, Automated Defect 
Classification (ADC) tools are implemented in Industry 4.0 to 
cut down on manual efforts and operational expenses in high-
volume manufacturing (HVM). 

Despite these advancements, one of the primary 
challenges in deploying DL models for defect detection is the 
requirement for large and diverse datasets. In practice, it may 
be quite challenging to collect a number of images of defective 
products, especially in the case of rare defective products or 
types of defects that are emerging [7][8]. This constraint poses 
a major impediment to training complex DL architectures, 
e.g., Vision Transformers (ViTs), that require large data 
volumes in order to work effectively. 

In conclusion, even though DL has the potential to 
transform the whole field of automated defect detection in 
industries, many obstacles still exist, particularly in terms of 
data availability, generalization, and real-time deployment. 
Current research is still trying to tackle these problems by 
optimizing the models, extending the available data, and 
transferring the results of one domain to another. 

A. Structure of the Paper 

The structure of this paper is as follows: Section II presents 
key DL techniques used for defect detection. Section III 
discusses major application domains and industrial use cases. 
Section IV outlines data-related challenges and future research 
opportunities. Sections V and VI present the summary of the 
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literature and conclude with insights and potential 
advancements in the field. 

II. DEEP LEARNING TECHNIQUES FOR DEFECT DETECTION  

DL has digitalized defect detection because it allows 
automatic feature extraction, robust pattern recognition, and 
eases the deployment process into various industrial fields. 
This section reviews important DL structures, CNNs, AEs, 
and GANs that have proved to be very successful in detecting 
and localizing surface anomalies. All the models have 
different contributions. CNNs give the possibility of high-
throughput classification, AEs allow the localization of 
defects in an unsupervised manner, and GANs allow data 
diversity and anomaly detection to be enhanced [9]. These 
basic concepts, architectural differences, uses, and constraints 
provide a comprehensive understanding of how they can be 
used to enhance defect detection capabilities and shape future 
research in the sphere of model optimization and hybrid 
implementation. 

A. Convolutional Neural Networks (CNNs)-Based Models 

CNNs are DL models that handle data with a grid layout, 
such as pictures.  Their architecture mimics that of the animal 
visual cortex, allowing them to effortlessly and adaptively 
learn feature hierarchies ranging from simple to complex 
patterns. Because users must manually create defect features 
using traditional surface defect detection methods, their 
capacity to handle complex features may be limited [10]. The 
characteristics that influence defect identification, however, 
may be automatically identified using CNNs.  

Key characteristics of CNN-based models in defect 
detection: 

• Feature Extraction: The process of identifying and 
extracting key physical and visual attributes from 
images of produce. These features, such as colour, 
texture, shape, and size, serve as inputs for ML 
classifiers, enabling accurate categorization of produce 
based on its quality. 

• Translation invariance: The ability to detect defects 
regardless of their position within the image, ensuring 
consistent and reliable performance in dynamic 
inspection environments. 

• Real-time application: Leveraging advanced GPUs 
and specialized DL frameworks, CNNs are capable of 
processing images at near real-time speeds, facilitating 
high-throughput and efficient industrial inspection 
[11]. 

Common CNN Architectures Used in Defect Detection: 

• Alex Net and VGG Net: The most well-known 
engineering tool used to manage DL is VGG Net.  In 
any case, it is similar to Alex Net’s 3 x 3 convolutions 
with more channels. 

• ResNet: Listens to the issue of the vanishing gradient 
and allows deeper networks, which enhances defect 
localization and segmentation. 

• Mobile Net and Efficient Net: Low-weight models 
applicable to an edge deployment for mobile on-device 
inspection. 

 

Fig. 1. Convolutional neural network (CNN) architecture and the training 

process 

A challenge related to CNNs is that they are sensitive to 
variations in illumination and easily suffer from overfitting 
with small datasets, and poor generalizability to different 
surface types [12]. To address these shortcomings, new 
research marries CNNs and transfer learning, data 
augmentation and domain adaptation (as shown in Figure 1). 
In addition to that, hybrid CNN-based models integrating 
conventional image processing and DL are promising in 
improving accuracy and flexibility. 

B. Autoencoders (AE) and Variants 

An autoencoder (AE) is a common DL model that is 
intended for unsupervised feature representation learning of 
data. Strong representation learning capacity, straightforward 
framework, and ease of training are among AE's benefits.  In 
the field of FDD, it has been frequently employed. 
Additionally, a variety of AE-based variations have been 
created and used in the FDD area to get around different data 
qualities or to make the learnt feature representations show 
distinct beneficial aspects [13]. RNN and CNN are two 
examples of DL modules that may be used in lieu of the 
encoder-decoder framework's encoder and decoder parts to 
extract complicated data characteristics. 

Specific AE Variants in Defect Detection: 

• Convolutional autoencoder (CAE): These methods 
circumvent the computational expense disadvantage of 
picture denoising by presenting the problem inside the 
statistical framework of regression, which results in a 
more manageable calculation [14]. Therefore, 
compared to density estimation, they provide for more 
representational capacity. 

• Denoising Autoencoders (DAEs): It is a unique kind 
of autoencoder that must learn the features in order to 
regenerate the complete samples from noisy inputs 
[15]. The suggested approach fixes the faulty PCBs in 
addition to identifying and locating potential flaws. 

• Memory-Augmented Autoencoders: It was 
suggested to address the issue of partial defect 
reconstruction [16]. Memory-augmented autoencoder-
based techniques frequently have trouble restoring 
complicated flaws and rely on restoring defects for 
inspection. 

C. Generative Adversarial Networks (GANs)  

GAN comprise a generator network and a discriminator 
network that are both taught through competition. The 
generator's job is to mimic the training data as precisely as 
possible, while the discriminator's is to tell the difference 
between the two.  GANs may be specially trained with a focus 
on anomaly detection in order to produce examples from the 
minority class or the anomalies. By exposing the GANs to a 
balanced ratio of normal and anomalous events during 
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training, they can learn to produce synthetic data that more 
precisely reflects both classes. Figure 2 illustrates the 
proposed Magna-Defect-GAN and a deep generative model 
where an image is encoded and combined with a latent noise 
vector, mask embedding, and guide vector. The decoder 
reconstructs a defect-enhanced output, aiding in anomaly 
detection or image restoration tasks. 

 

Fig. 2. Structure of the proposed Magna-Defect-GAN 

How GANs are used in defect detection is as follows: 

• Data Augmentation: A defect detection model's 
training dataset can be enhanced by creating synthetic 
pictures with GANs [17]. The training dataset may be 
made more diverse and the model's capacity for 
generalization enhanced by including synthetic 
images. 

• Unsupervised Anomaly Detection: GANs are trained 
on defect-free images so that the generator learns to 
reconstruct only normal patterns. When an image with 
defects is passed through the generator, the defective 
regions are not accurately reconstructed, resulting in 
noticeable differences between the input and output 
[18]. These discrepancies, measured using residual 
computation methods, are quantified as anomaly 
scores to effectively identify and localize defects. 

The two networks that make up the fundamental 
architecture of GANs pursue opposing optimization 
objectives with respect to a loss function.  Combining the 
DiffAugment approach with the StyleGAN2 architecture. 

• In terms of perceived picture quality and current 
distribution quality measures, StyleGAN2 is an 
enhanced GAN network.  

• DiffAugment is a simple tool that increases GAN data 
efficiency by applying differentiable augmentations to 
both real and fake samples. 

This combination improves convergence and stabilizes 
training, in contrast to other techniques that alter the 
distribution of real images by directly enriching the training 
data [19]. 

III. APPLICATIONS, DOMAINS, AND USE CASES  

In many different sectors, defect detection is essential to 
guaranteeing performance, safety, and dependability.  The 
application of DL approaches has greatly improved the 
capacity to identify, categories, and pinpoint flaws in fields 
including healthcare, civil infrastructure, and industrial 
manufacture. These methods have outperformed conventional 
techniques by leveraging feature extraction, image 
classification, and anomaly detection capabilities. This section 
explores domain-specific applications, highlighting how AI-
driven tools are revolutionizing structural monitoring, medical 
diagnostics, and automated inspection systems with greater 
accuracy and adaptability. 

A. Defect Detection in Industrial Manufacturing  

In general, a defect is described as an area or absence that 
deviates from a typical sample. A number of issues, such as 
subpar working conditions and insufficient technology, 
influence the quality of manufactured goods throughout the 
production process [20]. Defect identification used to be done 
by professionals. The significant impact of human subjectivity 
on the detection findings was one of the main causes of this. 
Much work has been spent on surface defect detection using 
conventional techniques. On the basis of the product's 
attributes, three conventional methods can be identified: those 
based on texture, colour, and shape.  

Defect detection has seen DL's meteoric rise in popularity 
as a result of its ability to improve the efficiency and accuracy 
of the process. Specialized methods have been employed in a 
number of investigations to identify surface imperfections. 
Using a vector texture feature and a percentage of the colour 
histogram feature, the colour-based feature approach 
classifies picture blocks to identify surface flaws in wood [21]. 
Recent uses of ML-based vision algorithms to identify surface 
flaws in industrial items have been divided into three groups 
according to texture, colour, and form characteristics: 

• Texture-based: Gray level co-occurrence matrix, 
Mathematical morphological, Fractal model, Gabor 
filter 

• Colour-based: Bivariate colour histograms and colour 
coherence vectors are useful tools for identifying and 
locating flaws. 

• Shaped-based: The use of Fourier spectra between the 
template and the inspection picture allows for a 
comparison of all the Defects, and it can find a range 
of non-repeating patterns in the electronics industry, 
even ones as little as one pixel wide. 

 

Fig. 3. Compares normal samples with defective samples of industrial 

products 

Defective samples and normal samples of industrial goods 
are contrasted (as seen in Figure 3). The top row contains good 
samples, while the second, third, and fourth rows contain 
inferior samples. Below the image, three types of defects are 
listed; the first, second, third, and fourth columns display 
wood, grid, capsule, leather, and bill, in that order. 

B. Infrastructure and Construction Monitoring  

In order to evaluate the safety and integrity of civil 
infrastructure, structural health monitoring, or SHM, 
continually analyzes data from embedded sensors. The 
primary objectives of SHM systems are to monitor structural 
conditions, detect damage or anomalies, and evaluate long-
term performance [22]. As a multidisciplinary and evolving 
technology, SHM enables intelligent maintenance strategies, 
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contributing significantly to the modernization and 
sustainability of infrastructure systems [23]. Notably, ML 
techniques have been shown to offer trustworthy solutions to 
issues related to identifying infrastructure flaws, 
outperforming conventional techniques in the areas of 
precision, automation, speed, adaptability, and scalability. 

One prominent example is the municipal drainage system, 
a critical yet often overlooked component of urban 
infrastructure. Closed-circuit television (CCTV) has become 
the standard for inspecting sewer networks. However, the vast 
volume of CCTV footage spanning thousands of kilometers of 
underground pipelines makes manual analysis labour-
intensive and time-consuming, often requiring large teams of 
trained personnel [24]. In order to overcome this difficulty, 
deep learning-based frameworks have been suggested to 
enable real-time defect detection in an automated way. They 
collaborate the convolutional neural networks (CNNs) and 
other advanced models to detect the structural deformities in 
the sewer pipes directly based on CCTV images, which can 
save a lot of time on the inspection process and at the same 
time improve both the accuracy and the repeatability of the 
results collected.  

C. Healthcare and Biomedical Imaging  

Electronic health records (EHRs), computerized physician 
order entry (CPOE), and clinical decision support systems 
(CDSS) are current healthcare essentials [25]. Such systems 
simplify the work processes, minimize the number of medical 
errors, and improve patient outcomes by delivering the right 
information at the right time. Nonetheless, the importance of 
and the complexity of clinical software demand high 
requirements of the reliability and quality of the software. The 
impact of defects in this kind of software is very serious, and 
it may include the safety of patients, non-conformity to 
regulatory standards, and significant financial losses. 

Their conventional fault-finding methods, such as manual 
reviews of code and standard rule-based static analysis, are not 
always reliable for detecting subtle and context-sensitive 
faults in clinical apps, in most situations. This limitation is 
compounded by the intricate dependencies, domain-specific 
logic, and frequent updates characteristic of healthcare 
software [21]. To address these challenges, predictive defect 
detection methods using machine learning have gained 
traction, enabling the early identification of high-risk modules 
based on historical data and software metrics. 

The model-based methods detect faults in photos with 
little to no variance.  Since there are a variety of uncertainties 
in industrial settings about the severity of errors in their forms 
and sizes, it is essential to create techniques that can adjust to 
these vast variances. Because learning-based approaches are 
more resilient to variance, they offer a superior substitute for 
preprogrammed feature identification techniques. Such 
resilience is possible with traditional ML techniques for 
regression and classification. These learning-based 
approaches make use of NN, DT, KNN, SVM, and NB.  These 
methods train the expected faults by taking into account the 
statistical variability of the defects on the images. 

IV. CHALLENGES AND FUTURE RESEARCH DIRECTIONS 

Even though significant improvements have been 
achieved in the field of DL in defect detection, there are 
several urgent issues that prevent its large-scale use in 
industry. The critical issues range between data-related 

challenges, including data imbalance, the complexity of 
annotations and data quality, generalization and model 
robustness issues and the increased need to explain the 
predictions and to trust them. Such issues limit both model 
performance and scalability, as well as reliability and user 
adoption. These barriers need to be solved in order to make 
defect detection systems resilient, transparent, and adaptable. 
This part is critical about these limitations as well as stating 
possible ways of future research to mitigate these and increase 
efficiency of the systems as including:  

A. Data Challenges: Imbalance, Annotation, and Quality 

One of the biggest obstacles to developing reliable and 
transferable DL models for defect identification is the amount 
of data that is currently available. One of the biggest issues is 
class imbalance, which occurs when there are more normal 
samples than defective ones. Models' sensitivity and reliability 
in real-world applications might be compromised due to 
imbalanced representations caused by this class imbalance, 
which fail to detect infrequent but critical errors.  

The next obstacle is the complexity of the annotation. 
Specific knowledge of the domain is usually necessary to 
create good labels on type of defects, which makes the 
annotation task error-prone, resource-intensive, and time-
consuming. Additionally, inconsistencies in labelling across 
different datasets introduce noise, which adversely affects the 
training process and diminishes the model’s robustness and 
generalization capability [26]. 

The quality of training data is equally vital, especially in 
applications like sewer or infrastructure defect detection, 
where CNN-based models rely heavily on the fidelity and 
representativeness of input data. Poor image resolution, 
occlusions, and environmental variability can degrade model 
performance [27]. To address these issues effectively, several 
steps are recommended. 

• It is especially important to examine the associated 
data errors. 

• To specify the necessary steps for removing the 
mistake sources and cleaning up the inaccurate data. 

• Prioritize the different data mistakes, take the 
appropriate action, and move them to the appropriate 
project plan. 

Overall, addressing these data-centric issues is 
foundational for building scalable and reliable deep learning 
systems for defect detection in diverse industrial contexts. 

B. Generalization and Model Robustness 

Models can learn concepts instead of exact rules thanks to 
DL's generalization capabilities.  As an example, classifiers 
that have been trained on ImageNet's 14 million pictures can 
anticipate which subjects belong to which classes in 
unfamiliar settings. The goal of training a model to generalize 
is not to find laws but rather to teach it broad ideas about what 
makes one type of object different from another, such as a bird 
from an aeroplane. When inspecting for defects, it is common 
for the background image to be the same, and the defects 
themselves may be similar in type or location. These cases 
increase the likelihood that models will learn shortcuts that are 
either unrelated to the picture defect or do not apply to newly 
discovered faults [28]. This study utilizes a dataset that 
incorporates a diverse array of external data, including fault 
types applicable in various contexts, to train a machine 
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learning model that addresses the over-fitting problem in 
defect inspection.  

• In order to enhance model generalization, data 
augmentation techniques, including flips, rotations, 
and color modifications, have been used to artificially 
increase the variety of training data. 

• Adversarial assaults, in which models are susceptible 
to inputs that are purposefully altered to produce 
mistakes. 

• Adversarial training has been implemented. To 
increase resilience against these disturbances, this 
method trains models on synthetic adversarial cases. 

C. Explainability and Trustworthiness 

Explainable Artificial Intelligence (XAI) sought to 
increase machine learning models' interpretability, 
transparency, and understandability in order to foster 
confidence in AI systems and guarantee that judgments made 
by AI could be rationalized and explained. Different 
approaches can be taken to improve the machine learning 
model's explainability; the choice depends on the data, the 
type of explanation, and the ML algorithm used: 

• A method for determining the relative significance of 
each feature in a machine learning model is called 
permutation feature importance. It reveals the extent to 
which the performance of a model would be affected 
by randomly shuffling the values of a specific feature 
while keeping the values of other features constant. 

• LIME is a method for explaining specific predictions 
that ML models make. It aspires to shed light on the 
"black box" component of numerous complex models.  

LIME provides an instance-specific local explanation for 
"Trusting a prediction" by determining which input data 
aspects significantly impact the prediction's outcome [29]. A 
glass model, which is a simple and interpretable model, is 
created by LIME to mimic the behaviour of the sophisticated 
model locally around the instance of interest. This model takes 
linear regression as an example. 

D. Future Directions  

Despite significant progress in DL-based material defect 
detection, current approaches still struggle to meet the 
demanding requirements of practical industrial applications, 
particularly in terms of cost-effectiveness, scalability, 
robustness, and real-time performance. Many systems find it 
difficult to maintain consistent performance across a variety 
of operational settings, although contemporary machine 
learning algorithms have greatly increased detection accuracy. 
The creation of flexible, interpretable, and resource-efficient 
models should be the main goal of future research in order to 
overcome these difficulties. To advance defect detection 
technology towards dependable and scalable industrial 
deployment, this section lists the main obstacles and possible 
paths forward. Additionally, in order to better reflect real-
world fault scenarios, emphasis should be placed on 
developing vast, diversified, and high-quality datasets. 
Furthermore, combining domain expertise with learning 
informed by physics may improve model generalization and 
usefulness. 

V. LITERATURE REVIEW 

This section reviews recent studies on DL approaches for 
defect detection, focusing on segmentation, generative 

models, and hybrid architectures. Table I summarizes each 
study’s methodology, key contributions, limitations, and 
future directions, offering insights into scalable, accurate, and 
efficient detection systems. 

Rahman et al. (2025) provide a thorough analysis that fills 
this gap by combining state-of-the-art DL approaches with 
conventional segmentation techniques. As AI advances, 
especially in picture segmentation, it challenges the efficiency 
and accuracy of traditional human inspection methods. This 
article provides a comprehensive study of methodological 
improvements, application breadth, and developing trends. 
The integration of hybrid techniques, DL models, and 
innovations like lightweight structures and attention 
mechanisms is emphasized. To improve model scalability, 
robustness, and flexibility, the analysis also identifies 
important research issues and suggests future lines of inquiry. 
This systematic study is a crucial resource for defect 
identification using image segmentation, as it fills in 
knowledge gaps and offers practical insights for both 
academia and industry [30]. 

Kohli and Chhabra (2025) describe the function of DL 
approaches in outlier classification and feature extraction 
across application areas. DL technologies have become a 
viable substitute for traditional ML techniques because of 
their ability to model features, evaluate detection rates, and 
mimic cognitive growth. The most recent experimental 
research methods and standard datasets are thoroughly 
examined. The methods used, performance metrics, datasets, 
difficulties encountered, and application areas all demonstrate 
the scholarly achievements over the last ten years. The study 
concludes by outlining the necessity for hybrid models, 
cutting-edge technology, and enhanced interpretability as 
future research avenues [31]. 

He et al. (2024) provide a comprehensive review of the 
current literature on surface defect inspection methods 
proposed for the years 2022–2024. To begin, these methods 
can be categorized into four sets, each with its own focus on 
generative models: multi-models, generative adversarial 
networks (GANs), diffusion models (DMs), and variational 
auto-encoders (VAEs). Part two delves into the current 
landscape of generative model surface defect inspection 
research from four angles: learning model, inspection 
problem, detection aim, and sample production. Presenting a 
comparative comparison of generative model-based defect 
inspection techniques follows, followed by a discussion of the 
available datasets and evaluation criteria commonly used for 
surface defect assessment. The paper finishes by discussing 
the challenges that generative model-based defect inspection 
systems are now facing and by proposing areas for further 
research [32]. 

Ma et al. (2024) provide a comprehensive overview of the 
development of industrial defect detection methods based on 
supervised and unsupervised algorithms, address critical 
difficulties, and outline future possibilities. Additionally, it 
contains evaluation metrics and standard datasets utilized for 
industrial product defect detection. To overcome these 
obstacles and improve fault detection, several strategies have 
been put forth. to thoroughly examine the most recent 
advancements in industrial product fault detection methods 
based on DL. It draws attention to the possibility of enhancing 
defect detection systems' precision, speed, and dependability 
in industrial settings. Using DL-based object detection 
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algorithms is one of the main goals of industrial product fault 
detection [33].  

Jiang et al. (2023) provide a transformer network for 
surface defect segmentation that uses multi-stage CNN feature 
insertion. This structure is similar to UNet and is called CIN 
Former. Efficiently and simply, CINFormer provides a feature 
integration method that incorporates the input picture's multi-
level CNN characteristics into the encoder's transformer 
network at different levels. This can preserve the advantages 
of CNN's ability to capture fine details and the transformer's 
ability to suppress background noise, both of which help with 
precise fault identification. Additionally, CIN Former 
provides a Top-K self-attention module that zeroes in on 
tokens that provide more critical information regarding the 
defects, thereby mitigating the impact of the duplicated 
backdrop. Trials on the surface defect datasets DAGM 2007, 
Magnetic tile, and NEU show that the proposed CIN Former 
performs at a state-of-the-art level when it comes to defect 
identification [34].  

Wang et al. (2023) The Defect Transformer (DefT), a 
successful hybrid transformer design for surface defect 

detection, which uses convolutional neural networks (CNNs) 
and transformers as one model to capture both local and non-
local interactions. To be more specific, the encoder module 
employs a convolutional stem block to initially store more 
complex spatial information. After that, they use the patch 
aggregation blocks to make a multi-scale representation with 
four levels of hierarchy. After each of these blocks, there is a 
series of DefT blocks. These blocks help with feature 
transformation and learning more location information, model 
multi-scale global contextual relationships with good 
computational efficiency, and encode local positions. Another 
block uses a lightweight multi-pooling self-attention. They 
conclude with a simple yet effective decoder module that 
gradually recovers spatial data from the encoder's skip 
connections [35]. 

Table I summarizes key studies on deep learning-based 
defect detection, outlining model types, application domains, 
datasets used, evaluation metrics, and performance outcomes, 
while also highlighting existing limitations and future research 
directions for improved defect identification accuracy. 

TABLE I.  COMPARATIVE ANALYSIS OF RECENT STUDIES ON DEEP LEARNING-BASED DEFECT DETECTION TECHNIQUES 

Reference Study On Approach Key Findings Challenges Future Direction 

Rahman et 

al. (2025) 

Image 

segmentation 

for defect 
detection 

Systematic review 

integrating deep learning 

models, hybrid techniques, 
and lightweight architectures 

Holistic coverage of methods, 

datasets, and trends in 

segmentation-based fault 
detection 

Scalability and 

adaptability of models 

Enhance robustness, 

develop generalizable 

segmentation frameworks 

Kohli et.al. 

(2025) 

Outlier 

classification 

using deep 

learning 

Comparative review of DL-

based feature extraction and 

classification 

DL outperforms classical ML 

in feature learning and 

detection accuracy 

Hardware constraints, 

interpretability issues 

Develop hybrid models, 

focus on efficient and 

explainable AI 

He et al. 

(2024) 

Surface defect 

detection with 
generative 

models 

Review of VAE, GAN, 

Diffusion, and multi-model-
based inspection systems 

Categorized and evaluated 

inspection models based on 
learning type and dataset use 

Lack of robust learning 

with limited defect 
samples 

Improve generalization, 

refine multi-model fusion 
approaches 

Ma et al. 

(2024) 

Industrial 

product defect 
detection 

Survey on 

supervised/unsupervised 
object detection algorithms 

Comprehensive trace of one-

stage, two-stage, and 
unsupervised DL models 

High variance in 

accuracy across 
datasets and conditions 

Boost speed and reliability; 

leverage domain adaptation 

Jiang et al. 

(2023) 

Surface defect 

segmentation 
(CINFormer) 

CNN-transformer hybrid 

with Top-K self-attention 

Preserves spatial detail, 

suppresses background noise 
for improved accuracy 

Balancing CNN-local 

and transformer-global 
features 

Broaden dataset 

applicability, enhance real-
time deployment 

Wang et al. 

(2023) 

Surface defect 

detection 

(DefT) 

Hybrid architecture 

combining CNN and 

transformer blocks 

Achieves fine-grained spatial 

encoding with multi-scale 

global context 

Complexity in encoder-

decoder integration 

Design lightweight, 

energy-efficient detection 

architectures 

VI. CONCLUSION AND FUTURE WORK 

Exploring the evolution of DL in defect detection reveals 
both significant progress and pressing limitations. Across 
industrial domains, the integration of CNNs, GANs, and 
hybrid DL models has elevated detection accuracy, yet key 
technical and data-related challenges continue to hinder 
broader adoption. Drawing from a wide spectrum of recent 
developments, this review highlights how DL algorithms have 
transformed defect detection tasks by enabling high precision 
and automation. Although the current state is very impressive, 
there are still concerns with data imbalance, generalization 
gaps, and model explainability. To address these difficulties, 
it will be necessary to use high-quality data, novel training 
practices, and understandable AI practices. Also, the 
application to industry is to be increased with the emphasis on 
future studies on domain adaptation, real-time inference, and 
trust-building mechanisms. With the growth of industries in 
the direction of intelligent automation, DL will continue to 
play a role in defect detection as long as the existing 
limitations are methodically resolved with interdisciplinary 

innovation and strict validation. Such a balance between being 
accurate, reliable and interpretable determines the future path. 

Future research should concentrate on making accurate, 
interpretable, and generalizable DL models that can be applied 
to a wide range of defect types on different materials. It is 
necessary to focus on the development of high-quality and 
scale-annotated datasets and an enhanced real-time detection 
capability. Furthermore, the approach that combines 
lightweight networks, domain adaptation, and explainable AI 
techniques can contribute to increased transparency of the 
model and its industrial deployment and pave the way for 
more intelligent and scalable defect detection systems. 
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