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Abstract—Hardware trojans are malicious pieces of software
that attempt to prevent the normal operation of a chip, and are
carefully engineered not to be detected during the silicon design
and verification phase before it is actually sold to a consumer.
The military, business, and academics are all looking into this
new threat. Consequently, as a defense during chip deployment,
run-time hardware Trojan identification is vitally needed. This
work focuses on hardware Trojans that affect processor
performance. This study presents a machine learning-based
approach to detecting hardware Trojans in IoT devices by
exploiting the Hardware Trojan Dataset. To preserve the most
relevant features, the dataset was subjected to a thorough
preparation procedure that included data cleaning,
augmentation, label encoding, normalization, and feature
selection using PCA. A number of models were evaluated,
including Logistic Regression, ResNet, Decision Tree, and Long
Short-Term Memory (LSTM). With the highest accuracy,
precision, recall, and F1-score of 95.25%, 95.25%, 95.27%, and
95.25%, respectively, the LSTM model fared better than the
others. The outcomes demonstrate how well feature selection
and sequential deep learning architectures work together to
capture temporal relationships in power trace data. Overall, the
suggested approach shows a strong and trustworthy foundation
for improving IoT hardware security against Trojan assaults.

Keywords—Integrated Circuit Security, Hardware Trojan,
Deep Learning, Long short-term memory (LSTM), Hardware
Trojan dataset, Power Trace Analysis.

1. INTRODUCTION

A huge network known as the Internet of Things (IoT)
links every object in the world to the web through a variety of
data-gathering devices, such as RFID tags, infrared detectors,
and GPS trackers[1][2][3]. The Internet and its associated
applications, such Smart homes, smart medical devices, and
the Internet of Vehicles, have grown increasingly varied,
improving the convenience and intelligence of people's life.
These devices continuously sense, process, and exchange
data, enabling real-time decision-making and intelligent
automation[4]. However, this massive integration of IoT
nodes into critical infrastructures has simultaneously
expanded the security threat landscape make them particularly
susceptible to both software and hardware-level attacks.
Consequently, ensuring trust, confidentiality, and resilience at
the hardware layer has become a cornerstone for the long-term
sustainability of IoT ecosystems. [5][6].

To guarantee the safe deployment of these devices during
their lifetime, hardware security is crucial, hardware-level
vulnerabilities, hardware Trojans (HTs) represent one of the
most severe and stealthy threats[7][8]. A harmful change that
is purposefully introduced into an integrated circuit (IC) at any
point in the hardware supply chain—during design,
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verification, manufacture, or testing—is known as a hardware
Trojan[9]. These modifications can remain dormant under
normal operating conditions and activate only under rare
triggers, leading to functionality degradation, data leakage, or
even complete system failure[10].These days, almost every
network, from the home network to the national military and
medical sectors, has at least one IoT device. Thus, for both
personal and national security, these gadgets' security is
crucial[11]. Conventional detection methods, including
functional testing, side-channel signal analysis, and formal
verification, rely heavily on golden reference models or high-
precision test setups—resources typically unavailable in low-
cost IoT environments. Traditional security mechanisms,
software stack[12][13][14]. such as static analysis, rule-based
heuristics, and signature-based detection, frequently fall short
in adapting to the dynamic nature of modern assaults and
generalizing across changing threat vectors.

Machine learning (ML) has become a revolutionary
method in the detection of hardware Trojan in IoT devices.
ML methods have the ability to learn patterns of
discrimination with respect to side-channel measurements,
power variations, or performance data automatically, without
user intervention to distinguish between legitimate and
infected circuits. In laboratory settings, it has been
demonstrated that superior models’ convolutional neural
networks (CNNs), random forests, and support vector
machines (SVMs) are among the most effective detection
algorithms. Nevertheless, the conventional ML algorithms can
be computationally infeasible with data of IoT edge
hardware[15]. algorithms for Al-based detection. It goes into
the effectiveness of ML defense models for tasks like
protecting hardware or satellite broadcasts against side-
channel attacks. Trojan horses that spy on equipment can be
the most successful way to combat intellectual property theft
by pirates.

A. Motivation and Contribution

This is driven by the fact that the security threats posed by
IoT devices have been increasing, especially after the
introduction of hardware trojans during manufacturing. These
types of trojans may cause sensitive information leakages,
provide an unprotected backdoor, shut down important
functions, or support botnet attacks on a large scale. The
computational capabilities of an IoT device are rather limited,
and the activation of a trojan is often done stealthily, making
it impossible to detect it using conventional methods. This
challenge drives the development of an intelligent LSTM-
based detection framework that can identify subtle temporal
anomalies in hardware behavior while ensuring computational
efficiency for resource-constrained IoT environments. The
framework is designed to effectively distinguish between
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benign circuits, dormant trojans, and active trojans with high
accuracy. This research offers several key contributions as
listed below:

e  The Hardware Trojan Dataset was used to develop a
ML-based framework to identify hardware Trojans
in IoT devices.

e Implemented a comprehensive data preprocessing
pipeline, including noise removal, augmentation,
label encoding, normalization, and data balancing.

e Applied PCA-based feature selection to reduce
dimensionality, eliminate redundancy, and enhance
model efficiency.

e Provided a scalable and reliable solution for
securing loT hardware systems against Trojan
attacks, addressing gaps in existing detection
methods.

e Presented and analyzed a Long Short-Term Memory
(LSTM) model that can learn the power traces data's
sequential dependencies.

e Several performance metrics, such as Fl-score,
recall, accuracy, and precision, were employed to
assess the model's efficacy in detecting hardware
Trojans.

B. Justification and novelty

The work is rationale by the fact that security challenges
in hardware Trojans in IoT devices are on the rise, and this is
a significant threat to both data integrity, system reliability,
and continuity of operation. Traditional methods of detecting
lack the ability to detect Trojans because their activation mode
is stealthy, and because of the limited resources available to
the IoT environment. The originality of this study is based on
the construction of an intelligent pattern of the LSTM-based
detection framework, which is an effective way to capture the
time-dependent dependency and missing behavioral trends of
hardware performances. The suggested approach is applicable
to the safe implementation of IoT hardware in the real world
by taking advantage of the sequential modeling Deep learning
(DL) capabilities to attain high accuracy, resilience, and
computing efficiency of the framework, making it a workable
and expandable solution to the issue.

C. Organization of the Paper

The structure of this paper is as follows: Section II
synthesizes pertinent studies on the hardware of IoT devices,
Malware identification, Section III explains the model's
implementation, preprocessing procedures, and dataset,
Section IV compares and contrasts the experimental findings,
and Section V summarizes the study's main conclusions and
suggests areas for further investigation.

II.  LITERATURE REVIEW

A comprehensive review and analysis of key research
studies on Hardware Trojan detection in IoT were undertaken
to inform and enhance the design of this work.

Yoshimi et al. (2025), the design and manufacturing stages
of IoT devices, there is a risk of Hardware Trojans (HTs)
being inserted into circuits due to the intervention of outside
companies. One method for effectively detecting HTs from
gate-level netlists is to use an ensemble learning model four
ensemble learning models: Random Forest, XGBoost, and
evaluate the accuracy of HT detection by adding a new Trojan
circuit generated using an automatic HT generation
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framework as a netlist for training and evaluation. it’s also use
SMOTE, ADASYN, and Borderline-SMOTE as
oversampling methods used in training, and evaluate the HT
detection accuracy 88.48% when the hyperparameters of each
method are optimized[16].

Moussa and Rafla (2024) offers a better method for
identifying hardware trojans by employing ML models to
decrease to prevent over-fitting, the characteristics should be
linear.  The true positive and true negative rates for the
supervised model were 99.2%, along with an F-measure, but
the unsupervised model relied on random projection to get a
true positive rate, providing a more robust ML-based
approach for HT detection[17].

S and E (2024) suggested an unsupervised ML model that
uses the controllability and observability Trojan detection
(COTD) approach to identify and classify signals in the gate-
level netlist as either valid or suspicious. The controllability
and observability of each net from several ISCAS-85 and
ISCAS-89 benchmark circuits are grouped together in a single
round using this COTD approach. It then employs density-
based clustering algorithms and K-means clustering to find
suspicious or hardware trojan signals that have traits similar
to those of HT-free signals. In spite of excellent precision, the
false positive rate (FPR) was low because these signals were
misshapen. The K-means clustering algorithm's experimental
findings on the ISCAS-85 and ISCAS-89 benchmark circuits
indicate that 98 and 0.8871[18].

Gourousis ef al. (2023) combine a proposed approach
to anomaly identification using a non-invasive means of
measuring on-chip temperature, combined with an
autoencoder-based ML system for hardware Trojan detection.
Even when the hardware Trojan consumes only 2.5% of the
circuit being tested for power, the developed algorithm in a
case study detects it with above 90% accuracy. The program
is capable of not only detecting the Trojan but also
determining its precise position on the chip. In order to
strengthen the security of current electronic systems'
hardware, especially for IoT uses, an ML-based anomaly
detection approach is now under development[19].

Sankar, Nirmala Devi. and Jayakumar (2022), The data
handled by IoT devices is extensive and includes sensitive
information pertaining to the app in use. IoT devices are
vulnerable to a variety of assaults in such a situation. ML-—
based Trojan detection in RS232 significantly facilitates
secure communication between IoT devices that are enabled
by the edge. To effectively detect Trojans, most supervised
algorithms for Trojan detection depend on high-quality
labeled datasets. It is clear that semi-supervised hardware is
both effective and practicable, with a true negative rate of
95.77% and an average true positive rate of Trojan horse
identification[20].

Wang ef al. (2021) provide a concept and technique for
hardware Gate-level Trojan detection that may be used to look
for trigger networks throughout the whole chip. Specifically,
each net's trigger-net properties are taken from known netlists,
and a variety of detection models are built using, ML
depending on the trigger modes. The netlist of the integrated
circuit being detected is searched for suspicious trigger nets
using the detection models, which then assign a
suspiciousness value to each net. Their average accuracy rate
15 96%, and they able to identify the bulk of hardware Trojans
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by identifying the suspiciousness ratings of the top 2% of
suspicious nets[21].

Gayatri et al. (2020) proposes the Atmel XMega
Controller (Target Board)'s AES-256 decryption method
combined with side-channel power analysis and ML to
identify hardware Trojans at the system level. It uses the
ChipWhisperer-Lite board to analyze power. Utilizing the
80/20 rule, the ML model is trained utilizing the power traces

of the hardware Trojan-infected and golden algorithm
(Hardware Trojan-free) methods. The accuracy of the
suggested ML model for every Trojan that was introduced
ranged from 97% to 100%[22].

Table I presents an overview of recent research on
Hardware Trojan detection, highlighting the proposed models,
datasets used, key findings, and the challenges encountered.

TABLE I. RECENT STUDIES ON HARDWARE TROJAN DETECTION IN IOT DEVICES USING MACHINE LEARNING

Author Key Dataset Methodology Key Findings Limitations Future Work / Scope
Yoshimi et al., | Gate-level netlists; | Ensemble Learning | Achieved 88.48% HT | Limited to gate-level | Extend ensemble methods
2025 Automatically Models (RF, XGBoost, | detection accuracy after | netlists; does  not | to RTL and FPGA-level

generated  Trojan | Oversampling with | hyperparameter address real-time or | designs; integrate with
circuits SMOTE, ADASYN, optimization side-channel Trojan | side-channel data for
scenarios hybrid detection
Moussa & | Custom gate-level | Supervised and | Supervised: 99.2% | Focused only on | Develop scalable ML
Rafla, 2024 datasets; Random | Unsupervised ML models | TP/TN, F-measure reducing feature | pipelines for complex SoC
projection features using random linearity; lacks | architectures integrate
scalability to large IoT | hybrid feature sets
designs
S. & E., 2024 ISCAS-85 and | Unsupervised ML model | K-means accuracy 98%, | Misclustering occurs for | Improve clustering
ISCAS-89 (K-means, Density-Based | FPR 0.8871; effectively | Trojan-free signals; | robustness; extend to
benchmark circuits Clustering) using | identifies suspicious | lacks robustness under | dynamic Trojan behavior
Controllability signals noisy datasets analysis

Atmel

inserted Trojans

side-channel setup

Gourousis et | On-chip Anomaly detection via | Detected Trojans with | Only tested on limited | Expand anomaly detection
al., 2023 temperature ~ data | Autoencoder-based ML | >90% accuracy even at | power variation | to other physical
(experimental case | model coupled with non- | 2.5% power | scenarios; not validated | parameters; real-time IoT

study) invasive temperature | consumption; localized | for diverse chip | deployment testing

sensing Trojan position architectures
Sankar, RS232 Semi-supervised ML | Achieved 95.77% true | Relies on  labeled | Develop fully
Nirmala Devi | communication Trojan detection for edge- | negative rate; effective | datasets; limited | unsupervised or self-
& Jayakumar, | interface (IoT | assisted IoT devices for secured IoT | coverage of multi- | learning detection models
2022 devices) communication protocol IoT systems for heterogeneous IoT
systems

Wang et al, | Known gate-level | ML-based trigger-net | Achieved 96% average | Performance depends | Improve adaptive learning
2021 netlists datasets feature extraction and | detection accuracy by | on accurate trigger- | of  trigger  patterns;
scoring for suspiciousness | flagging top suspicious | mode modeling; | integrate explainable Al

nets potential false positives | for interpretability
Gayatri et al., | AES-256 ML-based  side-channel | Detection accuracy | Limited  to AES | Extend to multi-algorithm
2020 implementation on | power analysis between 97% across | algorithm; dependenton | detection; integrate cross-

device generalization

using transfer learning

Research gaps: Several research gaps still exist despite
notable progress in hardware Trojan detection using ML and
DL approaches. Most existing approaches focus on specific
benchmark circuits or limited datasets, limiting their
generalizability to diverse IoT devices and complex integrated
circuits. Many methods rely heavily on side-channel analysis
or gate-level features, which may be vulnerable to
sophisticated Trojan designs or environmental variations.
Additionally, while high accuracy has been achieved in
controlled experiments, real-time detection in limited
resources IoT situations continues to be difficult. Furthermore,
there is a lack of defined frameworks for evaluating various
detection models, and few studies address the trade-offs
between detection accuracy, computational overhead, and
scalability. Future research should aim to develop more
robust, generalized, and lightweight detection techniques
capable of handling emerging hardware threats across varied
platforms.

III. RESEARCH METHODOLOGY

The proposed methodology for the Hardware Trojan
Dataset is used to detect hardware Trojans in IoT devices,
where selected power traces with and without HT circuits are
analyzed using a contrastive learning framework. The data
undergoes preprocessing, including missing value handling,
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noise removal, data augmentation, label encoding, and min-
max normalization, followed by feature selection via PCA to
retain the most informative features. It is thereafter divided
into testing sets of 20% and training sets of 80%. An LSTM
model that detects Trojan horses and logs temporal trends is
trained using the processed data. The Fl-score, recall,
precision, and accuracy are used to evaluate the model's
performance in order to guarantee accurate and robust
detection. How well the model can predict and efficiently
categorize all Trojan groups is demonstrated in Figure 1,
which shows its efficacy in detecting several types of Trojans
(No Trojan, Dormant Trojan, Active Trojan).

The next section provides a thorough description of every
stage in the suggested approach:

A. Data Gathering and Analysis

This study utilizes the Hardware Trojan Dataset. It is
designed to generate probability distributions for input data by
utilizing the contrastive learning architecture for every
category. In order to do this, 100 random data sets—50 with
and 50 without HT circuits—are chosen from the validation
dataset of different HT kinds. Data visualizations such as bar
plots and heatmaps were used to examine attack distribution,
feature correlations, etc., and are given below:
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Fig. 1. Proposed flowchart for Hardware Trojan Detection in IoT Devices
Using Machine Learning
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Fig. 2. Feature from the full hardware trojan dataset

The bar chart displays the sum of TF-IDF scores for the
top terms, likely extracted from a corpus of text, potentially
related to hardware description languages or programming in
figure 2. The most significant terms, with scores approaching
800, are "dIn2" and "dIn1", followed by terms like "end" and
"begin" which have scores around 550. Other notable terms,
with scores generally decreasing from around 350 to just over
150, include control flow and structural words "if", "reg",
"ok", "assign", "dIn", "wire", "input", "else", and terms that
appear to be variable names or labels like "nnd2s1", "j1",
"ner2s1", "b0", "output", and "nnd2s3".

A heatmap evaluating classification performance across
six data augmentation techniques (Logistic, Interpolate, Shift,
Noise, Filter, Scale) is shown in Figure 3. Colors range from
dark purple (96-120) to light yellow (60-72). Diagonal
elements display higher values (95-108), indicating superior
performance when training-testing augmentations match,
while off-diagonal elements show reduced accuracy (66-70)
with mismatched augmentation types.
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Fig. 3. Correlation Matrix Heatmap on Hardware Trojan Dataset

Fig. 4. Comparison of the effects of data augmentation

Time-series plots showing signal variations over 140
samples. Each subplot represents different signal processing
or augmentation techniques in Figure 4. The left column
depicts signals of greater frequency oscillations and
amplitudes between about +2, whereas the right column
presents diversified characteristics in terms of smooth
tendencies and varying frequency elements. There are blue
lines in all plots, and the axes have a similar scale to facilitate
comparison.

B. Data Pre-processing

The Hardware Trojan Dataset was used to prepare the data,
which involved the concatenation, data cleansing, and feature
engineering. The preprocessing stage included the processing
of missing values, noise removal, and the use of some of the
methods, like data augmentation, label encoding, and
normalization. These important preprocessing procedures are
summarized below:

e Handle missing values: The management of
missing values is vital in improving the model's
accuracy and preventing bias in data analysis. The
statistic power of the data has been preserved by
filling in unobserved data points with the use of
imputation or removal, enabling sound findings.

e Remove noise: To increase the data's quality and
ML models' effectiveness, it is crucial to eliminate
noise during the data preparation stage. A variety of
techniques are employed, depending on the type of
data and noise.

e Data augmentation: Data augmentation is an ML
technique that creates artificially bigger datasets by
combining modified copies of preexisting data,
increasing the size and diversity of training data.
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e Label Encoding: In ML, categorical input is
converted into a numerical representation using a
data preparation technique known as label encoding.
This kind of change is required since the majority of
ML algorithms require numerical input for both
training and prediction.

C. Min-Max Normalization

The normalization of records was done through the min-
max technique to ensure that records lie within a range of 0 to
1. This was done in an attempt to optimize the performance of
the employed classifiers and to lessen the influence of outliers.
Normalization was performed with respect to the following
mathematical equation (1):

X/ — X~ Xmin (1)
Xmax—Xmin
In which, X is the initial value of the feature, X’ is the
standardized value, X,,;,, is the lowest value of the feature and
Xmax 18 its highest value.

D. Feature selection using PCA

The process of selecting and choosing feature selection is
the process of choosing applying a dataset's most relevant
subset of input attributes to an ML model[23]. Feature
selection  using  Principal =~ Component  Analysis
(PCA) involves selecting a subset of original features by
identifying which ones contribute most to primary
components that account for the maximum variance in the
data.

E. Data Splitting

The dataset was divided into sets for testing and training,
with 20% set aside for testing and performance evaluation and
the remaining 80% used for model construction and parameter
estimation.

F.  Proposed Long Short-Term Memory (LSTM) Model

A Long Short-Term Memory (LSTM) model based on
DL is suggested for detecting hardware Trojans in Internet of
Things devices. Text categorization is a key area of expertise
for LSTM, as it can identify long-term relationships between
texts. The LSTM classifier is a type of multilayer network,
known as an RNN, which employs the preceding layer's
outputs as inputs for the subsequent layer. LSTM can handle
data sequences rather than individual data points due to its
feedback connections. All four of these gates—an input, an
output, and a forget—make up an LSTM node.

The three gates regulate the information flow inside the
cell, while the cell itself is in charge of storing data throughout
time. The LSTM layers are composed of memory blocks that
are connected recurrently and include three multiplicative
gates each. The following updates have been made to the unit's
input x;, hy_q, c;—1 and output h;, c;.

Gates:
i =0o(Wx, + Uphy_1 + b) 2)
fe = o(Wx, + Uihe—y + by) 3)
o = oWyx; + Uyhe_y + by) @
Input transform:
g: = tanh(l/l{gxt + Ughiq + bg) )
State update:
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= fiOc1+t i Og: (6)
hs = o; O tanh (c;) )

The preceding equations use o to represent using the
logistic sigmoid function and the symbol © to indicate
addition by elements. A memory cell ct at each time step t, an
input gate i, , a forget gate f;, an output gate o,, and a hidden
unit Att are all components of the LSTM unit. Whereas W and
U are the learnt parameters, B is the added bias. Consequently,
the input gate controls the amount of updating for every unit,
the forget gate controls the amount of erasing of memory cells,
and the output gate controls.

G. Evaluation metrics

To assess the effectiveness of the suggested architecture,
several performance indicators were utilized. The trained
model's metrics were calculated by comparing the actual
values with the projected ones: Number of True Negatives
(TN), Number of False Negatives (FN), and Number of True
Positives (TP). The next sections detail the important
measurements that were generated using these: recall,
accuracy, precision, and F1-score:

Accuracy: The proportion of cases that the trained model
accurately predicted out of all the occurrences in the dataset
(input samples), it is given as (8)-

TP+TN

Accuracy = ———
Y = IP+FP+TN+FN

(®)

Precision: The precision measures the ratio of the number
of correctly predicted positive instances to the total number of
positive occurrences anticipated by the model. Precision
indicates how good the classifier is in predicting the positive
classes and is expressed as (9)-

TP
TP+FP

Precision = &)

Recall: This measure is the proportion of occurrences
where positive outcomes were correctly anticipated relative to
all cases where positive outcomes were expected. In
mathematical form, it is given as (10)-

TP
TP+FN

Recall = (10)

F1 score: It integrates precision and memory in a
harmonic manner, that is, it helps to balance recall and
precision. Its range is [0, 1]. Mathematically, it is given as

(10)-

PrecisionxRecall
F1 —score = 2 x ———0nXe_ (11)

Precision+Recall

IV. RESULTS AND DISCUSSION

This section describes the experimental configuration and
performance of the suggested model in the training and testing
stages, emphasizing its assessment and computational
effectiveness. The experiments were conducted on the Linux
virtual machine, which has an Ubuntu 20.04 operating system,
250 GB of disk, and 4GB of RAM. It was necessary to add 5
GB of swap memory for system design and analysis in Table
II. The Hardware Trojan Dataset was used for training and
evaluation of the proposed LSTM model. The following
metrics were used to assess performance: F1-score, recall,
accuracy, and precision. A 95.25% F1-score, 95.25% recall,
95.25% precision, and 95.25% accuracy were all achieved by
the model. These findings validate the model's efficacy,
dependability, and computing efficiency by showing how well
it can identify and categorize hardware Trojans in IoT devices.

47



Dr. C. K. Patel], Journal of Global Research in Electronics and Communication, 1 (10) October 2025, 43-49

TABLE IL CLASSIFICATION RESULTS OF THE PROPOSED MODEL,
HARDWARE TROJAN DETECTION IN IOT DEVICES USING HARDWARE
TROJAN DATASET
Matrix LSTM

Accuracy 95.25

Precision 95.27

Recall 95.25

Fl1-score 95.25
00
No Trojan 21 13 )
: TO0
HiX)
Dormant Trojan o 500
100
M)
204

Active Trojan 41 0
100
0
No Trosan Dormant Trojan Active Trojan

Predicted Iabel

Fig. 5. confusion matrix of hardware trojan dataset

A confusion matrix displaying classification performance
for Trojan detection with three categories: No Trojan,
Dormant Trojan, and Active Trojan. The matrix uses a teal-to-
white color gradient to represent prediction frequencies.
Diagonal elements show high accuracy with values of 966,
997, and 959 for correct classifications, while off-diagonal
elements indicate minimal misclassifications, demonstrating
robust model performance in distinguishing between trojan
states.
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Fig. 7. Loss Curve for LSTM model

A. Comparative analysis

The accuracy of the suggested LSTM model is compared
to other models that are currently in use in Table III in order
to assess its efficacy. This assessment showcases the efficacy
of several ML models in identifying hardware Trojans in
Internet of Things devices by utilizing the Hardware Trojan
dataset. Although precision was not specified, the Decision
Tree (DT) model had an accuracy of 62.76%, a recall of
52.04%, and an F1-score of 58.29%. ResNet obtained an F1-
score of 63%, accuracy of 67 percent, and precision of 71.7%;
however, recall was not specified. The F1-score of 94.4%,
recall of 93.1%, and accuracy of 94.49% demonstrated the
high performance of the Logistic Regression (LR). This
LSTM model scored the highest across the board with 95.25%
accuracy, 95.27% precision, 95.25% recall, and 95.25 per cent
F1-score. It is clear that identifying hardware Trojans in IoT
devices was much easier using the proposed methodology.

TABLE III. COMPARISON OF DIFFERENT MACHINE LEARNING
MODELS FOR HARDWARE TROJAN DETECTION IN IOT DEVICES ON
HARDWARE TROJAN DATASET

Avenrncy (9%9)
|

’ < - 2_: 3 & ‘:

)
L

w

L

Epoch
Fig. 6. Accuracy Curve for LSTM model

A line graph depicting LSTM model training accuracy for
hardware trojan detection across 50 epochs in figure 6. The
training epochs (0—-50) are represented by the x-axis, while the
accuracy percentage (0—100%) is displayed on the y-axis. The
blue curve with circular markers demonstrates rapid
convergence in trojan classification, achieving approximately
90% accuracy within the first 5 epochs, then stabilizing
around 95-97% accuracy throughout remaining epochs,
indicating effective learning of trojan detection patterns with
minimal fluctuation and robust performance.

A hardware trojan detection model that uses LSTMs is
shown in Figure 7, with the loss that was shown across 50
epochs, both for training and validation. The y-axis shows loss
values (0-0.8), while the x-axis represents epochs (0-50). Both
curves exhibit a rapid decline from initial values around 0.7-
0.4, converging below 0.2 after 5 epochs, then stabilizing
around 0.1-0.15, demonstrating effective model convergence
in learning Trojan detection patterns with minimal overfitting.
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Model Accuracy Precision Recall F1-score
DT[24] 62.76 - 52.04 58.29
ResNet[25] 67 71.7 - 63
LR 94.49 - 93.1 94.4
LSTM 95.25 95.27 95.25 95.25

The suggested LSTM network in Lightweight ML
Techniques in Hardware Trojan Detection in IoT Devices
shows an impressive benefit, as the accuracy of the proposed
approach is 95.25% and indicates that the model has the
potential to recognize sequential relationships and
multifaceted patterns of the feature in the dataset. This high
performance is an indication of how this model can capture
small variations that were brought about by Hardware Trojans
with greater accuracy than the traditional ML methods, hence
making it a stable and effective solution to protect [oT devices
against hardware threats.

V. CONCLUSION AND FUTURE WORK

Hardware security is now essential to guaranteeing
overall system dependability due to the extensive use of IoT
devices. Since integrated circuits are the foundation of IoT
hardware, it is crucial to secure them against harmful
alterations like hardware Trojans. Pre-silicon detection
approaches are highly helpful since they don't require golden
chips, aren't affected by process noise, and can be utilized for
large-scale secure design verification. The study's
experimental research reveals that the suggested LSTM model
outperformed Logistic Regression (94.49%), ResNet (67%),
and Decision Tree (62.76%) with a maximum accuracy of
95.25%. By decreasing dimensionality, filtering noise, and

48



Dr. C. K. Patel], Journal of Global Research in Electronics and Communication, 1 (10) October 2025, 43-49

improving model efficiency and generalization, PCA-based
feature  selection  significantly = enhanced  detection
performance for trustworthy Hardware Trojan detection in
IoT devices. In order to better detect hardware Trojans, future
studies will concentrate on developing ensemble DL models
that include LSTM, CNN, and GRU to identify spatial-
temporal patterns. Efforts will include developing lightweight,
energy-efficient models via pruning and quantization,
applying federated and transfer learning for scalable, privacy-
preserving detection, and integrating attention mechanisms
for component-level vulnerability analysis. Additional
directions involve multi-modal detection using power,
electromagnetic, and thermal data; GAN-based dataset
expansion; explainable Al for interpretable auditing;
hardware-in-the-loop validation; and automated response
mechanisms for Trojan mitigation and recovery in critical IoT
infrastructures.
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