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Abstract—Hardware trojans are malicious pieces of software 

that attempt to prevent the normal operation of a chip, and are 

carefully engineered not to be detected during the silicon design 

and verification phase before it is actually sold to a consumer. 

The military, business, and academics are all looking into this 

new threat. Consequently, as a defense during chip deployment, 

run-time hardware Trojan identification is vitally needed. This 

work focuses on hardware Trojans that affect processor 

performance. This study presents a machine learning-based 

approach to detecting hardware Trojans in IoT devices by 

exploiting the Hardware Trojan Dataset.  To preserve the most 

relevant features, the dataset was subjected to a thorough 

preparation procedure that included data cleaning, 

augmentation, label encoding, normalization, and feature 

selection using PCA. A number of models were evaluated, 

including Logistic Regression, ResNet, Decision Tree, and Long 

Short-Term Memory (LSTM).   With the highest accuracy, 

precision, recall, and F1-score of 95.25%, 95.25%, 95.27%, and 

95.25%, respectively, the LSTM model fared better than the 

others.  The outcomes demonstrate how well feature selection 

and sequential deep learning architectures work together to 

capture temporal relationships in power trace data. Overall, the 

suggested approach shows a strong and trustworthy foundation 

for improving IoT hardware security against Trojan assaults. 

Keywords—Integrated Circuit Security, Hardware Trojan, 

Deep Learning, Long short-term memory (LSTM), Hardware 

Trojan dataset, Power Trace Analysis. 

I. INTRODUCTION 

A huge network known as the Internet of Things (IoT) 
links every object in the world to the web through a variety of 
data-gathering devices, such as RFID tags, infrared detectors, 
and GPS trackers[1][2][3]. The Internet and its associated 
applications, such Smart homes, smart medical devices, and 
the Internet of Vehicles, have grown increasingly varied, 
improving the convenience and intelligence of people's life. 
These devices continuously sense, process, and exchange 
data, enabling real-time decision-making and intelligent 
automation[4]. However, this massive integration of IoT 
nodes into critical infrastructures has simultaneously 
expanded the security threat landscape make them particularly 
susceptible to both software and hardware-level attacks. 
Consequently, ensuring trust, confidentiality, and resilience at 
the hardware layer has become a cornerstone for the long-term 
sustainability of IoT ecosystems. [5][6].  

To guarantee the safe deployment of these devices during 
their lifetime, hardware security is crucial, hardware-level 
vulnerabilities, hardware Trojans (HTs) represent one of the 
most severe and stealthy threats[7][8]. A harmful change that 
is purposefully introduced into an integrated circuit (IC) at any 
point in the hardware supply chain—during design, 

verification, manufacture, or testing—is known as a hardware 
Trojan[9]. These modifications can remain dormant under 
normal operating conditions and activate only under rare 
triggers, leading to functionality degradation, data leakage, or 
even complete system failure[10].These days, almost every 
network, from the home network to the national military and 
medical sectors, has at least one IoT device.  Thus, for both 
personal and national security, these gadgets' security is 
crucial[11]. Conventional detection methods, including 
functional testing, side-channel signal analysis, and formal 
verification, rely heavily on golden reference models or high-
precision test setups—resources typically unavailable in low-
cost IoT environments. Traditional security mechanisms, 
software stack[12][13][14]. such as static analysis, rule-based 
heuristics, and signature-based detection, frequently fall short 
in adapting to the dynamic nature of modern assaults and 
generalizing across changing threat vectors. 

Machine learning (ML) has become a revolutionary 
method in the detection of hardware Trojan in IoT devices. 
ML methods have the ability to learn patterns of 
discrimination with respect to side-channel measurements, 
power variations, or performance data automatically, without 
user intervention to distinguish between legitimate and 
infected circuits. In laboratory settings, it has been 
demonstrated that superior models’ convolutional neural 
networks (CNNs), random forests, and support vector 
machines (SVMs) are among the most effective detection 
algorithms. Nevertheless, the conventional ML algorithms can 
be computationally infeasible with data of IoT edge 
hardware[15]. algorithms for AI-based detection.  It goes into 
the effectiveness of ML defense models for tasks like 
protecting hardware or satellite broadcasts against side-
channel attacks.  Trojan horses that spy on equipment can be 
the most successful way to combat intellectual property theft 
by pirates. 

A. Motivation and Contribution 

This is driven by the fact that the security threats posed by 
IoT devices have been increasing, especially after the 
introduction of hardware trojans during manufacturing. These 
types of trojans may cause sensitive information leakages, 
provide an unprotected backdoor, shut down important 
functions, or support botnet attacks on a large scale. The 
computational capabilities of an IoT device are rather limited, 
and the activation of a trojan is often done stealthily, making 
it impossible to detect it using conventional methods. This 
challenge drives the development of an intelligent LSTM-
based detection framework that can identify subtle temporal 
anomalies in hardware behavior while ensuring computational 
efficiency for resource-constrained IoT environments. The 
framework is designed to effectively distinguish between 
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benign circuits, dormant trojans, and active trojans with high 
accuracy. This research offers several key contributions as 
listed below: 

• The Hardware Trojan Dataset was used to develop a 

ML-based framework to identify hardware Trojans 

in IoT devices. 

• Implemented a comprehensive data preprocessing 

pipeline, including noise removal, augmentation, 

label encoding, normalization, and data balancing. 

• Applied PCA-based feature selection to reduce 

dimensionality, eliminate redundancy, and enhance 

model efficiency. 

• Provided a scalable and reliable solution for 

securing IoT hardware systems against Trojan 

attacks, addressing gaps in existing detection 

methods. 

• Presented and analyzed a Long Short-Term Memory 

(LSTM) model that can learn the power traces data's 

sequential dependencies. 

• Several performance metrics, such as F1-score, 

recall, accuracy, and precision, were employed to 

assess the model's efficacy in detecting hardware 

Trojans. 

B. Justification and novelty 

The work is rationale by the fact that security challenges 
in hardware Trojans in IoT devices are on the rise, and this is 
a significant threat to both data integrity, system reliability, 
and continuity of operation. Traditional methods of detecting 
lack the ability to detect Trojans because their activation mode 
is stealthy, and because of the limited resources available to 
the IoT environment. The originality of this study is based on 
the construction of an intelligent pattern of the LSTM-based 
detection framework, which is an effective way to capture the 
time-dependent dependency and missing behavioral trends of 
hardware performances. The suggested approach is applicable 
to the safe implementation of IoT hardware in the real world 
by taking advantage of the sequential modeling Deep learning 
(DL) capabilities to attain high accuracy, resilience, and 
computing efficiency of the framework, making it a workable 
and expandable solution to the issue. 

C. Organization of the Paper 

The structure of this paper is as follows: Section II 
synthesizes pertinent studies on the hardware of IoT devices, 
Malware identification, Section III explains the model's 
implementation, preprocessing procedures, and dataset, 
Section IV compares and contrasts the experimental findings, 
and Section V summarizes the study's main conclusions and 
suggests areas for further investigation.  

II. LITERATURE REVIEW  

A comprehensive review and analysis of key research 
studies on Hardware Trojan detection in IoT were undertaken 
to inform and enhance the design of this work. 

Yoshimi et al. (2025), the design and manufacturing stages 
of IoT devices, there is a risk of Hardware Trojans (HTs) 
being inserted into circuits due to the intervention of outside 
companies. One method for effectively detecting HTs from 
gate-level netlists is to use an ensemble learning model four 
ensemble learning models: Random Forest, XGBoost, and 
evaluate the accuracy of HT detection by adding a new Trojan 
circuit generated using an automatic HT generation 

framework as a netlist for training and evaluation. it’s also use 
SMOTE, ADASYN, and Borderline-SMOTE as 
oversampling methods used in training, and evaluate the HT 
detection accuracy 88.48%  when the hyperparameters of each 
method are optimized[16]. 

    Moussa and Rafla (2024) offers a better method for 
identifying hardware trojans by employing ML models to 
decrease to prevent over-fitting, the characteristics should be 
linear.    The true positive and true negative rates for the 
supervised model were 99.2%, along with an F-measure, but 
the unsupervised model relied on random projection to get a 
true positive rate, providing a more robust ML-based 
approach for HT detection[17]. 

S and E (2024) suggested an unsupervised ML model that 
uses the controllability and observability Trojan detection 
(COTD) approach to identify and classify signals in the gate-
level netlist as either valid or suspicious.  The controllability 
and observability of each net from several ISCAS-85 and 
ISCAS-89 benchmark circuits are grouped together in a single 
round using this COTD approach. It then employs density-
based clustering algorithms and K-means clustering to find 
suspicious or hardware trojan signals that have traits similar 
to those of HT-free signals. In spite of excellent precision, the 
false positive rate (FPR) was low because these signals were 
misshapen.  The K-means clustering algorithm's experimental 
findings on the ISCAS-85 and ISCAS-89 benchmark circuits 
indicate that 98 and 0.8871[18]. 

      Gourousis et al. (2023) combine a proposed approach 
to anomaly identification using a non-invasive means of 
measuring on-chip temperature, combined with an 
autoencoder-based ML system for hardware Trojan detection.   
Even when the hardware Trojan consumes only 2.5% of the 
circuit being tested for power, the developed algorithm in a 
case study detects it with above 90% accuracy.  The program 
is capable of not only detecting the Trojan but also 
determining its precise position on the chip.  In order to 
strengthen the security of current electronic systems' 
hardware, especially for IoT uses, an ML–based anomaly 
detection approach is now under development[19]. 

Sankar, Nirmala Devi. and Jayakumar (2022), The data 
handled by IoT devices is extensive and includes sensitive 
information pertaining to the app in use.  IoT devices are 
vulnerable to a variety of assaults in such a situation.  ML–
based Trojan detection in RS232 significantly facilitates 
secure communication between IoT devices that are enabled 
by the edge.  To effectively detect Trojans, most supervised 
algorithms for Trojan detection depend on high-quality 
labeled datasets.  It is clear that semi-supervised hardware is 
both effective and practicable, with a true negative rate of 
95.77% and an average true positive rate of Trojan horse 
identification[20]. 

   Wang et al. (2021) provide a concept and technique for 
hardware Gate-level Trojan detection that may be used to look 
for trigger networks throughout the whole chip.  Specifically, 
each net's trigger-net properties are taken from known netlists, 
and a variety of detection models are built using, ML 
depending on the trigger modes.  The netlist of the integrated 
circuit being detected is searched for suspicious trigger nets 
using the detection models, which then assign a 
suspiciousness value to each net.  Their average accuracy rate 
is 96%, and they  able to identify the bulk of hardware Trojans 
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by identifying the suspiciousness ratings of the top 2% of 
suspicious nets[21]. 

     Gayatri et al. (2020) proposes the Atmel XMega 
Controller (Target Board)'s AES-256 decryption method 
combined with side-channel power analysis and ML to 
identify hardware Trojans at the system level.  It uses the 
ChipWhisperer-Lite board to analyze power.  Utilizing the 
80/20 rule, the ML model is trained utilizing the power traces 

of the hardware Trojan-infected and golden algorithm 
(Hardware Trojan-free) methods.  The accuracy of the 
suggested ML model for every Trojan that was introduced 
ranged from 97% to 100%[22].     

  Table I presents an overview of recent research on 
Hardware Trojan detection, highlighting the proposed models, 
datasets used, key findings, and the challenges encountered. 

TABLE I.  RECENT STUDIES ON HARDWARE TROJAN DETECTION IN IOT DEVICES USING MACHINE LEARNING 

Author  Key Dataset  Methodology  Key Findings Limitations Future Work / Scope 

Yoshimi et al., 
2025  

Gate-level netlists; 
Automatically 

generated Trojan 

circuits 

Ensemble Learning 
Models (RF, XGBoost, 

Oversampling with 

SMOTE, ADASYN,  

Achieved 88.48% HT 
detection accuracy after 

hyperparameter 

optimization 

Limited to gate-level 
netlists; does not 

address real-time or 

side-channel Trojan 
scenarios 

Extend ensemble methods 
to RTL and FPGA-level 

designs; integrate with 

side-channel data for 
hybrid detection 

Moussa & 

Rafla, 2024  
Custom gate-level 

datasets; Random 
projection features 

Supervised and 

Unsupervised ML models 
using random  

Supervised: 99.2% 

TP/TN, F-measure  
Focused only on 

reducing feature 
linearity; lacks 

scalability to large IoT 

designs 

Develop scalable ML 

pipelines for complex SoC 
architectures integrate 

hybrid feature sets 

S. & E., 2024  ISCAS-85 and 
ISCAS-89 

benchmark circuits 

Unsupervised ML model 
(K-means, Density-Based 

Clustering) using 

Controllability  

K-means accuracy 98%, 
FPR 0.8871; effectively 

identifies suspicious 

signals 

Misclustering occurs for 
Trojan-free signals; 

lacks robustness under 

noisy datasets 

Improve clustering 
robustness; extend to 

dynamic Trojan behavior 

analysis 
Gourousis et 

al., 2023  
On-chip 

temperature data 

(experimental case 
study) 

Anomaly detection via 

Autoencoder-based ML 

model coupled with non-
invasive temperature 

sensing 

Detected Trojans with 

>90% accuracy even at 

2.5% power 
consumption; localized 

Trojan position 

Only tested on limited 

power variation 

scenarios; not validated 
for diverse chip 

architectures 

Expand anomaly detection 

to other physical 

parameters; real-time IoT 
deployment testing 

Sankar, 
Nirmala Devi 

& Jayakumar, 

2022  

RS232 
communication 

interface (IoT 

devices) 

Semi-supervised ML 
Trojan detection for edge-

assisted IoT devices 

Achieved 95.77% true 
negative rate; effective 

for secured IoT 

communication 

Relies on labeled 
datasets; limited 

coverage of multi-

protocol IoT systems 

Develop fully 
unsupervised or self-

learning detection models 

for heterogeneous IoT 
systems 

Wang et al., 

2021  
Known gate-level 

netlists datasets 
ML-based trigger-net 

feature extraction and 

scoring for suspiciousness 

Achieved 96% average 

detection accuracy by 

flagging top suspicious 
nets 

Performance depends 

on accurate trigger-

mode modeling; 
potential false positives 

Improve adaptive learning 

of trigger patterns; 

integrate explainable AI 
for interpretability 

Gayatri et al., 

2020  
AES-256 

implementation on 
Atmel  

ML-based side-channel 

power analysis  
Detection accuracy 

between 97% across 
inserted Trojans 

Limited to AES 

algorithm; dependent on 
side-channel setup 

Extend to multi-algorithm 

detection; integrate cross-
device generalization 

using transfer learning 

Research gaps: Several research gaps still exist despite 
notable progress in hardware Trojan detection using ML and 
DL approaches. Most existing approaches focus on specific 
benchmark circuits or limited datasets, limiting their 
generalizability to diverse IoT devices and complex integrated 
circuits. Many methods rely heavily on side-channel analysis 
or gate-level features, which may be vulnerable to 
sophisticated Trojan designs or environmental variations. 
Additionally, while high accuracy has been achieved in 
controlled experiments, real-time detection in limited 
resources IoT situations continues to be difficult. Furthermore, 
there is a lack of defined frameworks for evaluating various 
detection models, and few studies address the trade-offs 
between detection accuracy, computational overhead, and 
scalability. Future research should aim to develop more 
robust, generalized, and lightweight detection techniques 
capable of handling emerging hardware threats across varied 
platforms. 

III. RESEARCH METHODOLOGY  

The proposed methodology for the Hardware Trojan 
Dataset is used to detect hardware Trojans in IoT devices, 
where selected power traces with and without HT circuits are 
analyzed using a contrastive learning framework. The data 
undergoes preprocessing, including missing value handling, 

noise removal, data augmentation, label encoding, and min-
max normalization, followed by feature selection via PCA to 
retain the most informative features. It is thereafter divided 
into testing sets of 20% and training sets of 80%.  An LSTM 
model that detects Trojan horses and logs temporal trends is 
trained using the processed data. The F1-score, recall, 
precision, and accuracy are used to evaluate the model's 
performance in order to guarantee accurate and robust 
detection.   How well the model can predict and efficiently 
categorize all Trojan groups is demonstrated in Figure 1, 
which shows its efficacy in detecting several types of Trojans 
(No Trojan, Dormant Trojan, Active Trojan). 

The next section provides a thorough description of every 
stage in the suggested approach: 

A. Data Gathering and Analysis 

This study utilizes the Hardware Trojan Dataset. It is 
designed to generate probability distributions for input data by 
utilizing the contrastive learning architecture for every 
category. In order to do this, 100 random data sets—50 with 
and 50 without HT circuits—are chosen from the validation 
dataset of different HT kinds. Data visualizations such as bar 
plots and heatmaps were used to examine attack distribution, 
feature correlations, etc., and are given below: 
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Fig. 1. Proposed flowchart for Hardware Trojan Detection in IoT Devices 

Using Machine Learning 

 

Fig. 2. Feature from the full hardware trojan dataset 

The bar chart displays the sum of TF-IDF scores for the 
top terms, likely extracted from a corpus of text, potentially 
related to hardware description languages or programming in 
figure 2. The most significant terms, with scores approaching 
800, are "dln2" and "dln1", followed by terms like "end" and 
"begin" which have scores around 550. Other notable terms, 
with scores generally decreasing from around 350 to just over 
150, include control flow and structural words "if", "reg", 
"ok", "assign", "dln", "wire", "input", "else", and terms that 
appear to be variable names or labels like "nnd2s1", "j1", 
"ner2s1", "b0", "output", and "nnd2s3".  

A heatmap evaluating classification performance across 
six data augmentation techniques (Logistic, Interpolate, Shift, 
Noise, Filter, Scale) is shown in Figure 3. Colors range from 
dark purple (96-120) to light yellow (60-72). Diagonal 
elements display higher values (95-108), indicating superior 
performance when training-testing augmentations match, 
while off-diagonal elements show reduced accuracy (66-70) 
with mismatched augmentation types. 

 

Fig. 3. Correlation Matrix Heatmap on Hardware Trojan Dataset 

 

Fig. 4. Comparison of the effects of data augmentation 

Time-series plots showing signal variations over 140 
samples. Each subplot represents different signal processing 
or augmentation techniques in Figure 4. The left column 
depicts signals of greater frequency oscillations and 
amplitudes between about ±2, whereas the right column 
presents diversified characteristics in terms of smooth 
tendencies and varying frequency elements. There are blue 
lines in all plots, and the axes have a similar scale to facilitate 
comparison. 

B. Data Pre-processing  

The Hardware Trojan Dataset was used to prepare the data, 
which involved the concatenation, data cleansing, and feature 
engineering. The preprocessing stage included the processing 
of missing values, noise removal, and the use of some of the 
methods, like data augmentation, label encoding, and 
normalization. These important preprocessing procedures are 
summarized below: 

• Handle missing values: The management of 

missing values is vital in improving the model's 

accuracy and preventing bias in data analysis. The 

statistic power of the data has been preserved by 

filling in unobserved data points with the use of 

imputation or removal, enabling sound findings.  

• Remove noise: To increase the data's quality and 

ML models' effectiveness, it is crucial to eliminate 

noise during the data preparation stage.  A variety of 

techniques are employed, depending on the type of 

data and noise. 

• Data augmentation: Data augmentation is an ML 

technique that creates artificially bigger datasets by 

combining modified copies of preexisting data, 

increasing the size and diversity of training data. 

Data preprocessing 

Min-Max Normalization 

Feature selection using 
PCA 

Data splitting 

Training  Testing  

Collect Hardware 

Trojan dataset 

Results  

Implement Long Short-

Term Memory (LSTM) 
Model  

Model evaluation 

accuracy, precision, recall 

and f1 score  
 

 Handle missing 

values 

 
Remove noise 

 

Data augmentation 

 

Label Encoding 
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• Label Encoding: In ML, categorical input is 

converted into a numerical representation using a 

data preparation technique known as label encoding.  

This kind of change is required since the majority of 

ML algorithms require numerical input for both 

training and prediction. 

C. Min-Max Normalization  

The normalization of records was done through the min-
max technique to ensure that records lie within a range of 0 to 
1. This was done in an attempt to optimize the performance of 
the employed classifiers and to lessen the influence of outliers. 
Normalization was performed with respect to the following 
mathematical equation (1): 

 𝑋′ =
𝑋− 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛
 () 

In which, X is the initial value of the feature, 𝑋′is the 

standardized value, 𝑋𝑚𝑖𝑛 is the lowest value of the feature and 
𝑋𝑚𝑎𝑥  is its highest value. 

D. Feature selection using PCA 

The process of selecting and choosing feature selection is 
the process of choosing applying a dataset's most relevant 
subset of input attributes to an ML model[23]. Feature 
selection using Principal Component Analysis 
(PCA) involves selecting a subset of original features by 
identifying which ones contribute most to primary 
components that account for the maximum variance in the 
data. 

E. Data Splitting 

The dataset was divided into sets for testing and training, 
with 20% set aside for testing and performance evaluation and 
the remaining 80% used for model construction and parameter 
estimation. 

F.  Proposed Long Short-Term Memory (LSTM) Model 

 A Long Short-Term Memory (LSTM) model based on 
DL is suggested for detecting hardware Trojans in Internet of 
Things devices.  Text categorization is a key area of expertise 
for LSTM, as it can identify long-term relationships between 
texts.  The LSTM classifier is a type of multilayer network, 
known as an RNN, which employs the preceding layer's 
outputs as inputs for the subsequent layer. LSTM can handle 
data sequences rather than individual data points due to its 
feedback connections.  All four of these gates—an input, an 
output, and a forget—make up an LSTM node.  

The three gates regulate the information flow inside the 
cell, while the cell itself is in charge of storing data throughout 
time. The LSTM layers are composed of memory blocks that 
are connected recurrently and include three multiplicative 
gates each. The following updates have been made to the unit's 
input 𝑥𝑡 , ℎ𝑡−1, 𝑐𝑡−1 and output ℎ𝑡 ,  𝑐𝑡. 

Gates:  

 𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) () 

 𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 +  𝑈𝑖ℎ𝑡−1 +  𝑏𝑓) () 

 𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 +  𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) () 

Input transform: 

 𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑔𝑥𝑡 +  𝑈𝑔ℎ𝑡−1 + 𝑏𝑔) () 

State update:  

 𝑐𝑡 =  𝑓𝑡 ⊙ 𝑐𝑡−1 +  𝑖𝑡 ⊙ 𝑔𝑡 () 

 ℎ𝑡 =  𝑜𝑡 ⊙ tanh (𝑐𝑡) () 

The preceding equations use 𝜎 to represent using the 

logistic sigmoid function and the symbol ⊙  to indicate 

addition by elements. A memory cell 𝑐𝑡 at each time step 𝑡, an 
input gate 𝑖𝑡  , a forget gate 𝑓𝑡, an output gate 𝑜𝑡, and a hidden 
unit ℎ𝑡𝑡 are all components of the LSTM unit. Whereas 𝑊 and 
𝑈 are the learnt parameters, B is the added bias. Consequently, 
the input gate controls the amount of updating for every unit, 
the forget gate controls the amount of erasing of memory cells, 
and the output gate controls. 

G. Evaluation metrics 

To assess the effectiveness of the suggested architecture, 
several performance indicators were utilized.   The trained 
model's metrics were calculated by comparing the actual 
values with the projected ones:  Number of True Negatives 
(TN), Number of False Negatives (FN), and Number of True 
Positives (TP).  The next sections detail the important 
measurements that were generated using these: recall, 
accuracy, precision, and F1-score: 

Accuracy: The proportion of cases that the trained model 
accurately predicted out of all the occurrences in the dataset 
(input samples), it is given as (8)- 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
TP+TN

TP+FP+TN+FN
 () 

Precision: The precision measures the ratio of the number 
of correctly predicted positive instances to the total number of 
positive occurrences anticipated by the model. Precision 
indicates how good the classifier is in predicting the positive 
classes and is expressed as (9)- 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP+FP
 () 

Recall: This measure is the proportion of occurrences 
where positive outcomes were correctly anticipated relative to 
all cases where positive outcomes were expected. In 
mathematical form, it is given as (10)- 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

𝑇𝑃+𝐹𝑁
 () 

F1 score: It integrates precision and memory in a 
harmonic manner, that is, it helps to balance recall and 
precision. Its range is [0, 1]. Mathematically, it is given as 
(10)-  

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 () 

IV. RESULTS AND DISCUSSION  

This section describes the experimental configuration and 
performance of the suggested model in the training and testing 
stages, emphasizing its assessment and computational 
effectiveness. The experiments were conducted on the Linux 
virtual machine, which has an Ubuntu 20.04 operating system, 
250 GB of disk, and 4GB of RAM. It was necessary to add 5 
GB of swap memory for system design and analysis in Table 
II. The Hardware Trojan Dataset was used for training and 
evaluation of the proposed LSTM model.  The following 
metrics were used to assess performance: F1-score, recall, 
accuracy, and precision.  A 95.25% F1-score, 95.25% recall, 
95.25% precision, and 95.25% accuracy were all achieved by 
the model.  These findings validate the model's efficacy, 
dependability, and computing efficiency by showing how well 
it can identify and categorize hardware Trojans in IoT devices. 
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TABLE II.  CLASSIFICATION RESULTS OF THE PROPOSED  MODEL, 
HARDWARE TROJAN DETECTION IN IOT DEVICES USING HARDWARE 

TROJAN DATASET  

Matrix LSTM 

Accuracy 95.25 

Precision 95.27 

Recall 95.25 

F1-score 95.25 

 

 

Fig. 5. confusion matrix of hardware trojan dataset 

A confusion matrix displaying classification performance 
for Trojan detection with three categories: No Trojan, 
Dormant Trojan, and Active Trojan. The matrix uses a teal-to-
white color gradient to represent prediction frequencies. 
Diagonal elements show high accuracy with values of 966, 
997, and 959 for correct classifications, while off-diagonal 
elements indicate minimal misclassifications, demonstrating 
robust model performance in distinguishing between trojan 
states. 

 

Fig. 6. Accuracy Curve for LSTM model 

A line graph depicting LSTM model training accuracy for 
hardware trojan detection across 50 epochs in figure 6. The 
training epochs (0–50) are represented by the x-axis, while the 
accuracy percentage (0–100%) is displayed on the y-axis. The 
blue curve with circular markers demonstrates rapid 
convergence in trojan classification, achieving approximately 
90% accuracy within the first 5 epochs, then stabilizing 
around 95-97% accuracy throughout remaining epochs, 
indicating effective learning of trojan detection patterns with 
minimal fluctuation and robust performance. 

A hardware trojan detection model that uses LSTMs is 
shown in Figure 7, with the loss that was shown across 50 
epochs, both for training and validation. The y-axis shows loss 
values (0-0.8), while the x-axis represents epochs (0-50). Both 
curves exhibit a rapid decline from initial values around 0.7-
0.4, converging below 0.2 after 5 epochs, then stabilizing 
around 0.1-0.15, demonstrating effective model convergence 
in learning Trojan detection patterns with minimal overfitting. 

 

Fig. 7. Loss Curve for LSTM model 

A. Comparative analysis 

The accuracy of the suggested LSTM model is compared 
to other models that are currently in use in Table III in order 
to assess its efficacy.  This assessment showcases the efficacy 
of several ML models in identifying hardware Trojans in 
Internet of Things devices by utilizing the Hardware Trojan 
dataset.   Although precision was not specified, the Decision 
Tree (DT) model had an accuracy of 62.76%, a recall of 
52.04%, and an F1-score of 58.29%.  ResNet obtained an F1-
score of 63%, accuracy of 67 percent, and precision of 71.7%; 
however, recall was not specified.  The F1-score of 94.4%, 
recall of 93.1%, and accuracy of 94.49% demonstrated the 
high performance of the Logistic Regression (LR).  This 
LSTM model scored the highest across the board with 95.25% 
accuracy, 95.27% precision, 95.25% recall, and 95.25 per cent 
F1-score. It is clear that identifying hardware Trojans in IoT 
devices was much easier using the proposed methodology.  

TABLE III.  COMPARISON OF DIFFERENT MACHINE LEARNING 

MODELS FOR HARDWARE TROJAN DETECTION IN IOT DEVICES ON 

HARDWARE TROJAN DATASET 

Model Accuracy Precision Recall F1-score 

DT[24] 62.76 - 52.04 58.29 

ResNet[25] 67 71.7 - 63 

LR 94.49 - 93.1 94.4 

LSTM 95.25 95.27 95.25 95.25 

The suggested LSTM network in Lightweight ML 
Techniques in Hardware Trojan Detection in IoT Devices 
shows an impressive benefit, as the accuracy of the proposed 
approach is 95.25% and indicates that the model has the 
potential to recognize sequential relationships and 
multifaceted patterns of the feature in the dataset. This high 
performance is an indication of how this model can capture 
small variations that were brought about by Hardware Trojans 
with greater accuracy than the traditional ML methods, hence 
making it a stable and effective solution to protect IoT devices 
against hardware threats. 

V. CONCLUSION AND FUTURE WORK 

 Hardware security is now essential to guaranteeing 
overall system dependability due to the extensive use of IoT 
devices. Since integrated circuits are the foundation of IoT 
hardware, it is crucial to secure them against harmful 
alterations like hardware Trojans. Pre-silicon detection 
approaches are highly helpful since they don't require golden 
chips, aren't affected by process noise, and can be utilized for 
large-scale secure design verification. The study's 
experimental research reveals that the suggested LSTM model 
outperformed Logistic Regression (94.49%), ResNet (67%), 
and Decision Tree (62.76%) with a maximum accuracy of 
95.25%. By decreasing dimensionality, filtering noise, and 
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improving model efficiency and generalization, PCA-based 
feature selection significantly enhanced detection 
performance for trustworthy Hardware Trojan detection in 
IoT devices. In order to better detect hardware Trojans, future 
studies will concentrate on developing ensemble DL models 
that include LSTM, CNN, and GRU to identify spatial-
temporal patterns. Efforts will include developing lightweight, 
energy-efficient models via pruning and quantization, 
applying federated and transfer learning for scalable, privacy-
preserving detection, and integrating attention mechanisms 
for component-level vulnerability analysis. Additional 
directions involve multi-modal detection using power, 
electromagnetic, and thermal data; GAN-based dataset 
expansion; explainable AI for interpretable auditing; 
hardware-in-the-loop validation; and automated response 
mechanisms for Trojan mitigation and recovery in critical IoT 
infrastructures. 
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