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Abstract—The increased usage of embedded systems in areas 

like mobile computing, biomedical applications, industrial 

automation, and Internet of Things (IoT) has exacerbated the 

need to operate the embedded systems intelligently with a focus 

on energy efficiency under tight computational and power 

limitations. Reinforcement Learning (RL) is a potential solution 

to optimize power consumption and system performance with 

adaptive and data-driven real-time decision-making. This 

article is an in-depth survey of RL-based approaches to 

embedded systems design, with a special focus on model-free 

and model-based learning, energy-aware learning, and other 

lightweight learning algorithms in resource-constrained 

systems. Important uses are Dynamic Voltage and Frequency 

Scaling (DVFS), CPU scheduling, real-time object detection and 

autonomous control of embedded robotics. Simulation 

environments like MATLAB/Simulink, OpenAI Gym, and 

Network Simulator 3 (NS-3), as well as common hardware 

platforms, like ARM Cortex-M, NVIDIA Jetson, and Texas 

Instruments MSP430. In literature, it is possible to identify the 

presence of significant achievements, including up to 47% 

power savings and latency reductions with Deep RL and 

adaptive Convolutional Neural Networks (CNNs). Nonetheless, 

there remain barriers to safe policy learning, deployment in 

real-time, and reliability in changeable environments. The 

paper ends with some of the main research findings, such as a 

scalable RL framework, energy-aware reward functions, and 

sophisticated simulation techniques on next-generation 

intelligent embedded systems.  

Keywords—Reinforcement Learning (RL), Energy Efficiency, 

Embedded Systems, Dynamic Voltage and Frequency Scaling 
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I. INTRODUCTION 

The fast advancement of electronic and mobile 
technologies has greatly accelerated the rise of embedded 
systems into many areas such as mobile computing, 
automotive electronics, wearable computing, industrial 
automation and the IoT. These systems are agile, task-
oriented, with stringent constraints, especially energy 
consumption [1]. Besides traditional task-oriented behaviour, 
modern embedded systems demonstrate more complex 
functionalities, such as wireless communication, high-
resolution video, and multi-tasking capability - thus, energy 
efficiency becomes integral in terms of design parameters. 
Unlike general-purpose processors that can "afford" a higher 
power budget, embedded systems are already limited to some 
type of finite energy source, some limiting them to less than a 
few milliwatts [2]. The differences create a wide range of 
requirements concerning management, to ensure its resources 

are used efficiently without depleting energy reserves within 
a reasonable timeframe from expected operation. 

Conventional energy saving techniques rely on pre-
defined control models and static configurations to achieve a 
trade-off between performance and power consumption. 
Although these energy-saving strategies may be helpful, they 
are not adaptable to dynamic workloads and unknown 
environments [3]. Overcoming these constraints, recent 
research has considered Reinforcement Learning (RL) - a 
form of ML that enables agents to learn the best actions 
through trial-and-error interactions with an environment [4]. 
RL techniques have the potential to implement intelligent 
policies for power management that learn from real-time 
feedback from the system to make optimal decisions based on 
dynamic system parameters, such as voltage levels, task 
scheduling [5], and core utilization. 

Extending on these motivations, one can see that 
Reinforcement Learning (RL) and in particular its deep and 
hierarchical variants are becoming an eye opener to transform 
energy-aware design of embedded systems[6]. Several recent 
review articles and surveys have highlighted the importance 
of frameworks of RL to accommodate the complex, real-time 
embedded systems and how they could be used to exceed the 
static control techniques and continually learn, through the 
feedback of the system, to make optimal decisions in a variety 
of settings, including voltage scaling, task scheduling, and 
resource allocation [7]. These RL techniques are now proving 
especially useful when embedded in heterogeneous and 
restricted-resource platforms, in which they are capable of 
dynamically trading off performance, energy consumption, 
and thermal constraints--not only resulting in energy savings 
but also in greater adaptability and robustness to a wide range 
of operating conditions. 

This study aims to address the energy efficiency issues of 
embedded systems due to rising complexity and constrained 
power resources. It discusses the shortcomings of traditional 
energy management approaches and highlights the 
possibilities of Reinforcement Learning (RL) to provide 
flexible, intelligent power optimization even as workloads 
change to maximize performance, flexibility, and overall 
system reliability. 

A. Structure of the Paper 

This paper is organized as follows: Section II discusses the 
fundamentals of embedded systems and energy efficiency. 
Section III explores RL applications in energy optimization, 
including CPU scheduling, DVFS, and WSNs. Section IV 
covers system architectures, simulation tools, and hardware 
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platforms. Section V presents a literature review, and Section 
VI concludes with key findings and future research directions. 

II. FUNDAMENTALS OF EMBEDDED SYSTEMS AND ENERGY 

EFFICIENCY 

It is essential to develop embedded systems with low 
energy consumption since they are implemented as battery-
powered devices in many applications. Such low-power 
applications need extremely effective utilization of the 
electrical energy that is available [8]. Battery-operated 
devices, wireless and mobile communication devices, 
consumer electronics, and biomedical applications are 
examples of typical low-power applications. Because CMOS 
is an energy-efficient technology, CMOS circuits are 
employed in these applications to minimize power usage. 

A. Model-Free vs. Model-Based Reinforcement Learning 

Model-Free (MFRL) and Model-Based (MBRL) 
approaches are two types of reinforcement learning (RL) 
techniques for energy-efficient embedded systems. MFRL 
techniques that do not mimic system dynamics, including 
Deep Q-Network (DQN) and Deep Deterministic Policy 
Gradient (DDPG), develop optimum policies from 
environmental interactions [9][10]. Although MFRL methods 
have achieved good performance on high-dimensional 
continuous control problems, they usually require a large 
number of interactions, which is challenging in embedded 
systems that have limited computation and power resources. 

In contrast, MBRL methods learn a model of the 
environment (or dynamics) and use this model to plan, or 
assist in improving learning, with the result being improved 
sample efficiency and convergence rates. This is especially 
interesting for embedded platforms where data collection is 
expensive and sensitivity to power, as seen of MBRL results 
on reducing energy overheads using imitation learning or self-
supervised learning to improve upon the efficiency of 
scheduling and actuation policy. 

Even though MBRL typically displays a more favorable 
data efficiency and is more useful in resource-constrained 
embedded systems, it often suffers from model inaccuracies 
that inevitably lessen performance. While MFRL is generally 
more robust for complex environments, it is often extremely 
computationally expensive, or at least ill-suited to embedded 
system scenarios without some sort of specialized 
computational acceleration involved. Therefore, the final 
decision to commit towards MFRL or MBRL in embedded 
contexts often be based on which is acceptable Considering 
the system's complexity, the learning resource constraints 
involved, and the trade-offs on power and performance. 

B.  Purpose of Embedded Systems 

Embedded systems are occasionally used as controllers to 
manage a particular device function. Usually, they are made 
to do this function just once, while more sophisticated 
embedded systems have the ability to manage whole operating 
systems. Despite being relatively basic tasks that do not 
require a lot of processing power, some more complex 
embedded systems can also do a variety of tasks [11]. Once 
designed to serve a certain function, embedded systems 
operate reliably and require little intervention because they are 
often not programmable. Some embedded devices, however, 
may have their software modified to improve expected 
functionality. Built and configured to fulfil a particular 
function, an embedded system is a very reliable electronic 

component that requires little maintenance and is very easy to 
add to a device. Despite being an essential part of a system, 
they are very unlikely to malfunction and do not require 
reprogramming, which makes them a crucial part of many 
systems that need to function independently or without help, 
including household appliances. 

C. Energy Consumption Prediction 

Economic growth, technological improvement, and 
population expansion are all contributing factors to the 
increase in energy consumption. Furthermore, all known 
energy sources are predicted to run out in a few decades due 
to the present level of energy exploration and usage. Energy 
has been thought to have a major role in life. Regarding 
primary energy resources, Bangladesh's position is rather 
weak in relation to global energy [12]. Bangladesh has to 
expand its infrastructure on a larger scale since its proven 
resources of coal, hydropower, natural gas, and oil are limited. 
About 2.2% more primary energy was consumed, which is the 
biggest rise since 2013. The fuel categories with the biggest 
increases in energy consumption were natural gas and natural 
gas-fired power plants, followed by oil and renewable energy 
sources. Comparing renewable energy to non-renewable 
energy, renewable energy still accounts for a modest portion 
of the world's energy portfolio. For instance, oil is the primary 
fuel used today and the most significant non-renewable 
resource, contributing 34.2% of global energy consumption in 
2017. Despite the exclusion of traditional biomass usage, only 
10% of 2016's total energy consumption came from 
contemporary renewable energy sources. This proportion is 
expected to rise in the future as nations lower their high levels 
of fossil fuel-based energy use. 

III. APPLICATIONS OF RL IN ENERGY-EFFICIENT EMBEDDED 

SYSTEMS 

Reinforcement Learning (RL) has emerged as a sound tool 
of enhancing embedded systems' energy efficiency [13]. 
Energy efficiency in embedded systems shares numerous 
features with RL decision-making in the sense that RL may 
successfully be implemented in many aspects of energy 
efficiency in embedded systems due to its intelligent, adaptive 
and real-time decision-making abilities. The Dynamic 
Voltage and Frequency Scaling (DVFS) application is an 
illustration of RL. DVFS leverages upon the RL algorithms 
(e.g. Q-learning), to automatically control the voltage and 
frequency of the CPU in an attempt to minimize power and 
yet satisfy performance requirements. The dynamic 
management of a system in terms of CPU overhead can be 
achieved via implementation of RL [14]. The RL basics 
enable one to conserve energy without explicit requirements 
of predetermined regulations. Task schedule and CPU 
resource management can also use RL elements as in this case 
the agents can be taught how to manage the computational 
resource to efficiently deploy resources and strike a sweet 
balance between execution times and expended energy. 
Relative to wireless sensor networks (WSNs), focuses on 
power control and sleep scheduling in wireless sensor 
networks (WSNs), so that the long-time use of the networks 
can be accomplished. RL can also directly perform robotic 
control in real-time, and instead of latency-sensitive tasks such 
as neural networks, it would enable nodes to learn new tasks 
(e.g. adaptive CNN scaling/preferential model pruning) and 
consume less power than executing vision-based tasks.  



Dr. A. Jain, Journal of Global Research in Electronics and Communication, 1 (10) October 2025, 23-29 

© JGREC 2025, All Rights Reserved   25 

A. RL-based Development of CPU Scheduling Techniques 

CPU scheduling is a critical factor influencing the 
performance and energy efficiency of embedded systems. 
Scheduling algorithms are generally categorized into two 
types: (1) non-preemptive, where once a task starts execution, 
it runs to completion, and (2) preemptive, where tasks can be 
interrupted to allocate CPU resources to higher-priority jobs 
[15]. Traditional scheduling methods aim to optimize various 
criteria such as maximizing throughput, minimizing 
turnaround time, response time, and CPU overhead. 

Reinforcement Learning (RL) offers a promising approach 
to enhance traditional scheduling by learning optimal 
scheduling policies based on system state and workload 
behavior. In RL-based scheduling, an agent observes the 
system's CPU load, task queue, and energy consumption 
patterns, then learns to make decisions that balance energy 
savings and performance. Unlike rule-based schedulers, RL 
agents adapt over time to changing workload conditions, 
leading to improved energy efficiency without sacrificing 
system responsiveness. To make quick scheduling selections 
among several available processes, Figure 1 lists the main 
CPU scheduling strategies. 

For instance, it is possible to train Q-learning or deep 
reinforcement learning models to respectively prefer 
lightweight or time-critical tasks upon low-power state or 
schedule workloads in a manner that minimizes idle power. 
Adaptive scheduling is highly advantageous in embedded 
systems where available resources are limited and energy 
efficiency is critical. 

 

Fig. 1. Common CPU Scheduling Techniques 

B. RL-Driven DVFS for Multi-Power Domains 

In embedded systems, dynamic voltage and frequency 
scaling, or DVFS, is a crucial technique for lowering power 
consumption. The RISC core, geometry processor (GP), and 
rendering engine (RE) are examples of current GPU 
components that function in separate power domains and 
necessitate dynamic performance scaling [16]. Traditional 
DVFS schemes use fixed control logic and feedback loops, 
which often lead to inefficiencies, especially in multi-domain 
systems due to area and power overhead. 

Reinforcement Learning (RL) offers a more adaptive and 
intelligent solution. By observing system parameters, such as 
FIFO occupancy and workload patterns—RL agents can learn 
optimal voltage and frequency settings in real-time. This 
enables efficient control of Power Management Units (PMUs) 
without relying on bulky digital components. RL-driven 

DVFS not only improves energy efficiency but also supports 
scalable, low-overhead designs suitable for integration as 
reusable Intellectual Property (IP) in energy-aware embedded 
systems. 

C. RL Approaches to Power Management in WSNs 

In Wireless Sensor Networks (WSNs), energy 
preservation techniques are essential due to the limited battery 
life of sensor nodes and the often-inaccessible nature of their 
deployment environments [17][18]. These methods are often 
divided into two main groups: power management and power 
control, as shown in the comparative analysis in Table I. 

• Power control focuses on minimizing energy 
consumption by adjusting the transmission range of 
sensor nodes dynamically. Therefore, an effective 
power control strategy allows communication between 
nodes while maintaining connectivity and Quality of 
Service (QoS) level for the network. Since in most off-
the-shelf sensor nodes, the transmission power 
represents approximately 70% of the total energy 
consumed by the node, knowledge of the environment 
and reliable control of the transmission power is 
essential for long-term operation of the network. The 
purpose of power control is to optimize the amount of 
energy used in the transmission of data while ensuring 
that the connectivity between the nodes is extended 
and that the overall communication quality remains 
high. 

• Power management consists of turning off 
unnecessary radios, or an entire radio to save energy 
[19]. Power management features can also be useful to 
manage rechargeable batteries and prolonging the 
node's life. Some of the key power management 
features and techniques were: power-gating 
(deactivating unused components to remove leakage 
power), avoiding voltage regulators (which induce 
power conversion losses), and power matching 
(making sure there is no energy loss between power 
supply and load demand). 

• Reinforcement Learning (RL), you can take a more 
dynamic, intelligent approach to power control and 
management in WSNs. RL algorithms, such as Q-
learning or Deep Q-Networks, learn from the 
environment and employ observations of state to adapt 
actions or determine the appropriate situation in which 
to reduce transmission power or transition nodes to 
low-power sleep modes. These learning-based 
approaches can adjust to ephemeral network 
conditions, variable traffic patterns, and fluctuating 
energy availability, thus enhancing energy efficiencies 
and providing increased operational life for WSNs 
[20]. Compared to static approaches, such as rules, RL 
techniques are characterization by continual evolution 
and adaptation, making them uniquely powerful for 
operational environments in embedded applications—
such as WSNs—that are characteristically energy 
constrained. 

TABLE I.  COMPARATIVE SUMMARY OF ENERGY OPTIMIZATION TECHNIQUES IN WSNS 

Aspect Power Control Power Management RL-Based Approaches 

Primary Goal Minimize energy via transmission power 

adjustment 

Reduce energy by turning off idle 

components 

Learn and adapt optimal energy-saving actions 

dynamically 

Methodology Adjust node transmission range to 
maintain connectivity and QoS 

Use techniques like power-gating 
and avoiding voltage regulators 

Use RL algorithms (e.g., Q-learning, DQN) for 
adaptive control 
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Adaptability Low – fixed rules or thresholds Moderate – rule-based but not 
workload-aware 

High – adapts to traffic, topology, and energy 
fluctuations 

Energy 

Saving 

Potential 

Moderate – especially in communication-

heavy scenarios 

High – reduces leakage and idle 

power 

High – optimized decisions based on system state 

and environment 

Complexity Low to Moderate Low High – requires training and computational 

support 

Suitability Static or moderately dynamic WSNs Ideal for periodic sleep-wake duty 

cycling in sensor nodes 

Best for dynamic, unpredictable, or mission-

critical WSN deployments 

IV. SYSTEM ARCHITECTURES AND IMPLEMENTATION 

This section describes how Reinforcement Learning (RL) 
is integrated into embedded systems, emphasizing the 
hardware platforms, simulation tools, control flow, energy 
efficiency, and algorithm selection that are necessary to 
implement intelligent embedded solutions that are resource-
constrained, adaptive, and energy-aware. 

A. RL Integration in Embedded System Design 

Incorporating Reinforcement Learning (RL) into the 
process of embedded system design holds the potential to 
develop intelligent adaptive behaviour, while improving 
energy efficiency but must account for the limitations of 
environments such as an embedded system with regards to 
computational capabilities, memory size, and energy 
constrained budgets [21], all while ensuring responsive and 
reliable performance in real-time. 

In embedded systems, RL agents are typically positioned 
within the system control loop - meaning that the RL agent is 
able to see system states continuously (e.g., CPU temperature, 
power consumption, task queue) and also observe optimal 
actions (e.g., change voltage-frequency, schedule tasks, sleep 
modes), and learn via closed-loop learning, creating an 
autonomous learning system that can respond to workload and 
environmental changes, enhancing performance and 
improving battery life. 

B. Key Considerations in RL Integration 

• Lightweight RL Algorithms: Embedded systems 
typically cannot support computationally heavy 
algorithms like full-scale Deep Q-Networks (DQNs). 
Therefore, lightweight and memory-efficient 
algorithms such as tabular Q-learning, SARSA, or 
linear function approximators are commonly used. In 
more capable embedded platforms, compressed or 
pruned deep neural networks can be implemented to 
enable deep RL without exceeding hardware 
limitations. 

• On-Device vs. Offloaded Learning: On-device 
learning allows for autonomous operation but may lead 
to increased energy consumption due to prolonged 
computation. To address this, many systems use a 
hybrid learning approach training the RL model in the 
cloud or on edge servers and then deploying the trained 
model to the embedded device for inference only. This 
reduces energy usage while still benefiting from 
intelligent control. 

• Control Flow Integration: The RL agent is integrated 
into the system’s decision-making flow. It collects 
inputs from various sensors, analyzes current 
operational states, and chooses actions that optimize 
predefined objectives (such as minimizing energy 
usage or reducing latency) [22]. Feedback from the 
environment, including the results of past actions, is 
used to refine the policy over time. 

• Adaptability and Robustness: RL’s ability to learn 
from real-time feedback makes it particularly suited 
for non-deterministic or dynamic embedded 
environments. For example, an RL-powered 
embedded controller can adjust to variations in 
workload intensity, temperature fluctuations, or 
battery degradation—without requiring pre-
programmed rules. 

• Energy-Aware Learning: Specific reward functions 
can be crafted to penalize energy-inefficient behaviors 
and reward long-term energy conservation. This drives 
the RL agent to find energy-optimal policies over time, 
aligning learning objectives directly with the system’s 
operational goals. 

C. Simulation Tools and Hardware Platforms Used 

The development and evaluation of Reinforcement 
Learning (RL) techniques for embedded systems often rely on 
simulation environments and specific hardware platforms to 
model system behavior, validate performance, and test energy 
efficiency strategies. 

1) Simulation Tools 
Simulation tools are essential for prototyping RL-based 

control strategies before deployment on real hardware [23]. 
These tools offer safe, scalable, and repeatable environments 
for evaluating the impact of energy-aware decisions. 

• MATLAB/Simulink: Frequently used for modeling 
embedded control systems with integrated RL 
toolboxes for reward shaping, training, and 
deployment testing. 

• OpenAI Gym: Widely used for prototyping and 
benchmarking RL algorithms. It can be customized to 
simulate embedded system scenarios like task 
scheduling or thermal management. 

• NS-3: A network simulator used in Wireless Sensor 
Networks (WSNs) and IoT studies, often extended 
with RL modules to simulate energy-aware 
communication protocols. 

• OMNeT++: Another discrete event simulator used for 
networked embedded systems with support for 
mobility, battery modeling, and integration of external 
RL logic. 

• Custom Simulators: Many studies build domain-
specific simulators to replicate specific embedded use-
cases, such as CPU-GPU scheduling, voltage scaling, 
or sensor duty cycling. 

2) Hardware Platforms 
To validate RL algorithms in real-world embedded 

systems, researchers use low-power and resource-constrained 
platforms that reflect deployment conditions. 

• Raspberry Pi and NVIDIA Jetson Series: Used for 
testing RL models in moderately resource-rich 
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environments, enabling both inference and limited on-
device training. 

• ARM Cortex-M and Cortex-A Platforms: 
Commonly used in ultra-low-power embedded 
systems. These are suitable for evaluating lightweight 
RL models and dynamic power management. 

• TI MSP430 and Arduino: Ultra-low-power 
microcontrollers used for prototyping energy-saving 
techniques in constrained environments like sensor 
nodes or wearables. 

• FPGA-based Platforms: Employed when custom RL 
hardware acceleration or power modeling is required, 
offering fine-grained control of energy consumption. 

• IoT Testbeds: Platforms such as TOSSIM and FIT 
IoT-LAB offer large-scale, realistic testing 
environments for RL-based energy optimization in 
distributed sensor networks. 

V. LITERATURE REVIEW 

This literature Summary examines recent advancements in 
applying reinforcement learning to energy-efficient embedded 
systems, highlighting innovations in DVFS, learning rate 
optimization, deep learning integration, and object detection, 
while emphasizing adaptive policies, real-time performance, 
and reliability across diverse embedded computing 
environments. 

Kumar and Sharma (2025) proposed energy-aware 
paradigm for the implementation of deep learning using CNN 
for real-time control in autonomous robotics for embedded 
systems. The overall power efficiency of the proposed system 
is achieved through efficient control of power consumption, 
latency, and runtime while has minor degradation in terms of 
accuracy through a number of approaches including model 
pruning, quantization, and adaptive CNN scaling. Studies 
show that power consumption has been cut down to as low as 
47.3% thereby making the optimized system's power 
consumption in obstacle avoidance tasks as low as 2.8 W, the 
base system consuming up to 5.0 W power. The delay was 
also lowered to 47.1% in key tasks from 20 MS, thus ensuring 
more immediate decisions in real time activities [24]. 

Panda, Tripathy and Bhuyan (2024) presented an 
innovative solution by integrating proposed Reinforcement 
Learning (RL) algorithms into DVFS, addressing the 
limitations of conventional methods. The proposed RL 
algorithm employs Q-Learning, a model-free RL technique, to 
iteratively learn the optimal policy for adjusting CPU voltage 
and frequency. customized algorithm enables autonomous 
real-time adjustments of voltage and frequency levels, 
showcasing a remarkable 20% power saving compared to 
conventional DVFS. The model's adaptability is evident in its 
capacity to achieve optimal configurations across diverse 
workloads, emphasizing RL's potential for enhancing energy 
efficiency in computing systems [25]. 

Kaloev and Krastev (2023) detailed investigation and the 
development of guidelines for LR selection in RL. Use a 
variety of RL simulations to test the effectiveness of LR 
adaptation, each with a sophisticated 18-dimensional action 
space and a 128-dimensional input vector respectively. These 
simulations cover a variety of RL tasks, highlighting how 

important LR selection is in different situations.  Two separate 
artificial neural networks (ANNs), one with 44,000 
connections and the other with 27,000 hidden layer 
connections, may be used to provide insights regarding LR 
methods. They use a variety of customized LR values, from a 
first peak of 0.25 to a pitiful 0.000000025. test both the 
stability of training, where training episodes consistently 
obtain scores around the average, and the cumulative agent 
scores over several training episodes. Findings clarify LR 
tactics that maximize stability and performance in various RL 
contexts, providing academics and practitioners with 
insightful advice [26]. 

Lyu, Shen and Zhang (2022) innovations in reinforcement 
learning, such as deep reinforcement learning techniques and 
traditional reinforcement learning techniques. This article 
then examines the current state of advanced reinforcement 
learning studies, such as large-scale study of curiosity-driven 
learning, fuzzy theory-based deep reinforcement learning 
techniques, distributed deep reinforcement learning 
algorithms, and so on. Lastly, the difficulties that 
reinforcement learning faces are covered in this essay. In 
artificial intelligence, reinforcement learning is one of the 
most active study areas. In contrast to other machine learning 
techniques, reinforcement learning uses action mappings to 
learn from the environment. Therefore, by maximizing the 
environment's cumulative reward value, the selected course of 
action might create an ideal plan through trial and error [27]. 

Tan and Karaköse (2022) implemented a deep 
reinforcement learning method for object recognition on the 
PASCAL Voc2012 dataset using a neural network that 
constructed ourselves. method involves gradually advancing a 
bounding box in the direction of the objective to completely 
frame the item in the image. The developed neural network is 
composed of five layers. Additionally, the reward mechanism 
is optimized in order to maximize the map value. The option 
made about the incentive policy undoubtedly impact the result 
and be crucial to the agent's training. The outcome is improved 
since the ground truth and the bounding box intersect at the 
maximum rate because of the optimized reward function [28]. 

Yeganeh-Khaksar et al. (2021) said that increasing the 
voltage and frequency might produce a decrease in task 
dependability since it raises the fault rate and the jobs' worst-
case execution duration. In this letter, they propose an 
improved DVFS method based on reinforcement learning to 
lower the power consumption of sporadic tasks at runtime in 
multicore embedded systems without task-reliability 
degradation, while also achieving power savings and 
maintaining task-reliability at an acceptable level. When 
making judgements, the reinforcement learner takes into 
account the power savings and task-reliability changes caused 
by DVFS. It also determines the appropriate voltage-
frequency level for each task so that the timing restrictions are 
satisfied [29]. 

Table II summarizes recent studies on reinforcement 
learning approaches for energy-efficient embedded systems, 
highlighting methods, key findings, challenges addressed, and 
potential future research directions across diverse application 
domains. 
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TABLE II.  COMPARATIVE ANALYSIS ON REINFORCEMENT LEARNING APPROACHES FOR ENERGY-EFFICIENT EMBEDDED SYSTEMS 

Author Study On Approach Key Findings Challenges Future Directions 

Kumar and 
Sharma (2025) 

Real-time control in 
autonomous robotics 

CNN with model 
pruning, quantization, 

and adaptive scaling 

Reduced power to 
2.8W (47.3% savings); 

latency cut by 47.1% 

Minor degradation in 
accuracy 

Improve model compression 
techniques without sacrificing 

accuracy 

Charan Bhuyan et 
al. (2024) 

RL-integrated DVFS Q-Learning (model-
free RL) 

20% power saving; 
adaptive to workload 

variations 

Needs consistent 
training stability 

across devices 

Extend RL-DVFS integration 
to GPU and heterogeneous 

systems 

Kaloev and 

Krastev (2023) 

LR selection in RL 

training 

Varying LR values on 

ANNs (27k and 44k 
connections) 

Optimized cumulative 

agent scores and 
training stability 

LR sensitivity to 

task-specific 
variations 

Design adaptive LR 

schedulers for diverse RL 
tasks 

Lyu et al. (2022) Advancements in RL 

methods 

Distributed RL, Fuzzy-

RL, Curiosity-driven 
learning 

Surveyed multiple 

advanced RL 
algorithms 

Generalization to 

real-world scenarios 

Develop hybrid models 

combining RL with symbolic 
reasoning 

Tan and Karaköse 

(2022) 

Object detection 

using DRL 

Custom 5-layer neural 

network with bounding 

box movement 

Improved mAP by 

optimized reward 

design 

Sensitive to reward 

function design 

Apply to dynamic real-time 

video analytics 

Yeganeh-Khaksar 

et al. (2021) 

DVFS in multicore 

systems with task 

reliability 

RL-enhanced DVFS 

maintaining timing 

constraints 

Achieved power 

savings without 

degrading reliability 

Managing fault rates 

under voltage 

scaling 

Extend to mixed-criticality 

task systems and real-time 

schedulers 

VI. CONCLUSION AND FUTURE WORK 

The reinforcement learning (RL), when incorporated into 
an embedded system, provides a potential route to realize 
intelligent, energy-efficient, and adaptive computation in a 
resource-constrained setting. It has been shown that 
lightweight RL algorithms, integration of deep learning, and 
reward-based energy optimization methods are efficient in 
accelerating performance in real-time and minimizing energy 
usage. Prominent breakthroughs are RL-based dynamical 
voltage and frequency scaling (DVFS) and control policies to 
adapt to robotic systems and neural network compression 
strategies that combine efficiency and accuracy. Moreover, 
RL has been found promising in solving non-deterministic 
operational issues and achieving robustness in situation of 
varying load and environmental conditions. The use of 
simulation tools and embedded hardware platforms including 
Raspberry Pi, ARM Cortex, and FPGA-based systems have 
been the most crucial in the verification of these 
methodologies prior to their implementation. Nevertheless, 
there are outstanding issues that are related to on-device 
training, safe exploration on policy and real-time stability.  

Future works are also needed to devise scalable RL models 
that offer online adaptation with minimal overhead, 
incorporate sophisticated neural architectures, and build 
domain-specific simulators to conduct strict testing. Further, 
reliability, interpretability and safety of learning based 
embedded control systems will be imperative in adoption to 
safety-critical and real-time applications. 
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