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Abstract—The increased usage of embedded systems in areas
like mobile computing, biomedical applications, industrial
automation, and Internet of Things (IoT) has exacerbated the
need to operate the embedded systems intelligently with a focus
on energy efficiency under tight computational and power
limitations. Reinforcement Learning (RL) is a potential solution
to optimize power consumption and system performance with
adaptive and data-driven real-time decision-making. This
article is an in-depth survey of RL-based approaches to
embedded systems design, with a special focus on model-free
and model-based learning, energy-aware learning, and other
lightweight learning algorithms in resource-constrained
systems. Important uses are Dynamic Voltage and Frequency
Scaling (DVFS), CPU scheduling, real-time object detection and
autonomous control of embedded robotics. Simulation
environments like MATLAB/Simulink, OpenAl Gym, and
Network Simulator 3 (NS-3), as well as common hardware
platforms, like ARM Cortex-M, NVIDIA Jetson, and Texas
Instruments MSP430. In literature, it is possible to identify the
presence of significant achievements, including up to 47%
power savings and latency reductions with Deep RL and
adaptive Convolutional Neural Networks (CNNs). Nonetheless,
there remain barriers to safe policy learning, deployment in
real-time, and reliability in changeable environments. The
paper ends with some of the main research findings, such as a
scalable RL framework, energy-aware reward functions, and
sophisticated simulation techniques on next-generation
intelligent embedded systems.

Keywords—Reinforcement Learning (RL), Energy Efficiency,
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I. INTRODUCTION

The fast advancement of electronic and mobile
technologies has greatly accelerated the rise of embedded
systems into many areas such as mobile computing,
automotive electronics, wearable computing, industrial
automation and the IoT. These systems are agile, task-
oriented, with stringent constraints, especially energy
consumption [1]. Besides traditional task-oriented behaviour,
modern embedded systems demonstrate more complex
functionalities, such as wireless communication, high-
resolution video, and multi-tasking capability - thus, energy
efficiency becomes integral in terms of design parameters.
Unlike general-purpose processors that can "afford" a higher
power budget, embedded systems are already limited to some
type of finite energy source, some limiting them to less than a
few milliwatts [2]. The differences create a wide range of
requirements concerning management, to ensure its resources
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are used efficiently without depleting energy reserves within
a reasonable timeframe from expected operation.

Conventional energy saving techniques rely on pre-
defined control models and static configurations to achieve a
trade-off between performance and power consumption.
Although these energy-saving strategies may be helpful, they
are not adaptable to dynamic workloads and unknown
environments [3]. Overcoming these constraints, recent
research has considered Reinforcement Learning (RL) - a
form of ML that enables agents to learn the best actions
through trial-and-error interactions with an environment [4].
RL techniques have the potential to implement intelligent
policies for power management that learn from real-time
feedback from the system to make optimal decisions based on
dynamic system parameters, such as voltage levels, task
scheduling [5], and core utilization.

Extending on these motivations, one can see that
Reinforcement Learning (RL) and in particular its deep and
hierarchical variants are becoming an eye opener to transform
energy-aware design of embedded systems[6]. Several recent
review articles and surveys have highlighted the importance
of frameworks of RL to accommodate the complex, real-time
embedded systems and how they could be used to exceed the
static control techniques and continually learn, through the
feedback of the system, to make optimal decisions in a variety
of settings, including voltage scaling, task scheduling, and
resource allocation [7]. These RL techniques are now proving
especially useful when embedded in heterogeneous and
restricted-resource platforms, in which they are capable of
dynamically trading off performance, energy consumption,
and thermal constraints--not only resulting in energy savings
but also in greater adaptability and robustness to a wide range
of operating conditions.

This study aims to address the energy efficiency issues of
embedded systems due to rising complexity and constrained
power resources. It discusses the shortcomings of traditional
energy management approaches and highlights the
possibilities of Reinforcement Learning (RL) to provide
flexible, intelligent power optimization even as workloads
change to maximize performance, flexibility, and overall
system reliability.

A. Structure of the Paper

This paper is organized as follows: Section II discusses the
fundamentals of embedded systems and energy efficiency.
Section III explores RL applications in energy optimization,
including CPU scheduling, DVFS, and WSNs. Section IV
covers system architectures, simulation tools, and hardware
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platforms. Section V presents a literature review, and Section
VI concludes with key findings and future research directions.

II. FUNDAMENTALS OF EMBEDDED SYSTEMS AND ENERGY
EFFICIENCY

It is essential to develop embedded systems with low
energy consumption since they are implemented as battery-
powered devices in many applications. Such low-power
applications need extremely effective utilization of the
electrical energy that is available [8]. Battery-operated
devices, wireless and mobile communication devices,
consumer electronics, and biomedical applications are
examples of typical low-power applications. Because CMOS
is an energy-efficient technology, CMOS circuits are
employed in these applications to minimize power usage.

A. Model-Free vs. Model-Based Reinforcement Learning

Model-Free (MFRL) and Model-Based (MBRL)
approaches are two types of reinforcement learning (RL)
techniques for energy-efficient embedded systems. MFRL
techniques that do not mimic system dynamics, including
Deep Q-Network (DQN) and Deep Deterministic Policy
Gradient (DDPG), develop optimum policies from
environmental interactions [9][10]. Although MFRL methods
have achieved good performance on high-dimensional
continuous control problems, they usually require a large
number of interactions, which is challenging in embedded
systems that have limited computation and power resources.

In contrast, MBRL methods learn a model of the
environment (or dynamics) and use this model to plan, or
assist in improving learning, with the result being improved
sample efficiency and convergence rates. This is especially
interesting for embedded platforms where data collection is
expensive and sensitivity to power, as seen of MBRL results
on reducing energy overheads using imitation learning or self-
supervised learning to improve upon the efficiency of
scheduling and actuation policy.

Even though MBRL typically displays a more favorable
data efficiency and is more useful in resource-constrained
embedded systems, it often suffers from model inaccuracies
that inevitably lessen performance. While MFRL is generally
more robust for complex environments, it is often extremely
computationally expensive, or at least ill-suited to embedded
system scenarios without some sort of specialized
computational acceleration involved. Therefore, the final
decision to commit towards MFRL or MBRL in embedded
contexts often be based on which is acceptable Considering
the system's complexity, the learning resource constraints
involved, and the trade-offs on power and performance.

B. Purpose of Embedded Systems

Embedded systems are occasionally used as controllers to
manage a particular device function. Usually, they are made
to do this function just once, while more sophisticated
embedded systems have the ability to manage whole operating
systems. Despite being relatively basic tasks that do not
require a lot of processing power, some more complex
embedded systems can also do a variety of tasks [11]. Once
designed to serve a certain function, embedded systems
operate reliably and require little intervention because they are
often not programmable. Some embedded devices, however,
may have their software modified to improve expected
functionality. Built and configured to fulfil a particular
function, an embedded system is a very reliable electronic
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component that requires little maintenance and is very easy to
add to a device. Despite being an essential part of a system,
they are very unlikely to malfunction and do not require
reprogramming, which makes them a crucial part of many
systems that need to function independently or without help,
including household appliances.

C. Energy Consumption Prediction

Economic growth, technological improvement, and
population expansion are all contributing factors to the
increase in energy consumption. Furthermore, all known
energy sources are predicted to run out in a few decades due
to the present level of energy exploration and usage. Energy
has been thought to have a major role in life. Regarding
primary energy resources, Bangladesh's position is rather
weak in relation to global energy [12]. Bangladesh has to
expand its infrastructure on a larger scale since its proven
resources of coal, hydropower, natural gas, and oil are limited.
About 2.2% more primary energy was consumed, which is the
biggest rise since 2013. The fuel categories with the biggest
increases in energy consumption were natural gas and natural
gas-fired power plants, followed by oil and renewable energy
sources. Comparing renewable energy to non-renewable
energy, renewable energy still accounts for a modest portion
of the world's energy portfolio. For instance, oil is the primary
fuel used today and the most significant non-renewable
resource, contributing 34.2% of global energy consumption in
2017. Despite the exclusion of traditional biomass usage, only
10% of 2016's total energy consumption came from
contemporary renewable energy sources. This proportion is
expected to rise in the future as nations lower their high levels
of fossil fuel-based energy use.

III. APPLICATIONS OF RL IN ENERGY-EFFICIENT EMBEDDED
SYSTEMS

Reinforcement Learning (RL) has emerged as a sound tool
of enhancing embedded systems' energy efficiency [13].
Energy efficiency in embedded systems shares numerous
features with RL decision-making in the sense that RL may
successfully be implemented in many aspects of energy
efficiency in embedded systems due to its intelligent, adaptive
and real-time decision-making abilities. The Dynamic
Voltage and Frequency Scaling (DVFS) application is an
illustration of RL. DVFS leverages upon the RL algorithms
(e.g. Q-learning), to automatically control the voltage and
frequency of the CPU in an attempt to minimize power and
yet satisfy performance requirements. The dynamic
management of a system in terms of CPU overhead can be
achieved via implementation of RL [14]. The RL basics
enable one to conserve energy without explicit requirements
of predetermined regulations. Task schedule and CPU
resource management can also use RL elements as in this case
the agents can be taught how to manage the computational
resource to efficiently deploy resources and strike a sweet
balance between execution times and expended energy.
Relative to wireless sensor networks (WSNs), focuses on
power control and sleep scheduling in wireless sensor
networks (WSNs), so that the long-time use of the networks
can be accomplished. RL can also directly perform robotic
control in real-time, and instead of latency-sensitive tasks such
as neural networks, it would enable nodes to learn new tasks
(e.g. adaptive CNN scaling/preferential model pruning) and
consume less power than executing vision-based tasks.
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A. RL-based Development of CPU Scheduling Techniques

CPU scheduling is a critical factor influencing the
performance and energy efficiency of embedded systems.
Scheduling algorithms are generally categorized into two
types: (1) non-preemptive, where once a task starts execution,
it runs to completion, and (2) preemptive, where tasks can be
interrupted to allocate CPU resources to higher-priority jobs
[15]. Traditional scheduling methods aim to optimize various
criteria such as maximizing throughput, minimizing
turnaround time, response time, and CPU overhead.

Reinforcement Learning (RL) offers a promising approach
to enhance traditional scheduling by learning optimal
scheduling policies based on system state and workload
behavior. In RL-based scheduling, an agent observes the
system's CPU load, task queue, and energy consumption
patterns, then learns to make decisions that balance energy
savings and performance. Unlike rule-based schedulers, RL
agents adapt over time to changing workload conditions,
leading to improved energy efficiency without sacrificing
system responsiveness. To make quick scheduling selections
among several available processes, Figure 1 lists the main
CPU scheduling strategies.

For instance, it is possible to train Q-learning or deep
reinforcement learning models to respectively prefer
lightweight or time-critical tasks upon low-power state or
schedule workloads in a manner that minimizes idle power.
Adaptive scheduling is highly advantageous in embedded
systems where available resources are limited and energy
efficiency is critical.

CPU Scheduling Techniques

First Come- Shortest Job Priority Round Robin Mukidevel Quene Mulllevel
First Sarved First (SIF) Scheduling (RR) Scheduting Feedback Quene
(FCFS) QIQs) DEQ)

Fig. I. Common CPU Scheduling Techniques

B. RL-Driven DVFS for Multi-Power Domains

In embedded systems, dynamic voltage and frequency
scaling, or DVFS, is a crucial technique for lowering power
consumption. The RISC core, geometry processor (GP), and
rendering engine (RE) are examples of current GPU
components that function in separate power domains and
necessitate dynamic performance scaling [16]. Traditional
DVFS schemes use fixed control logic and feedback loops,
which often lead to inefficiencies, especially in multi-domain
systems due to area and power overhead.

Reinforcement Learning (RL) offers a more adaptive and
intelligent solution. By observing system parameters, such as
FIFO occupancy and workload patterns—RL agents can learn
optimal voltage and frequency settings in real-time. This
enables efficient control of Power Management Units (PMUs)
without relying on bulky digital components. RL-driven

DVEFS not only improves energy efficiency but also supports
scalable, low-overhead designs suitable for integration as
reusable Intellectual Property (IP) in energy-aware embedded
systems.

C. RL Approaches to Power Management in WSNs

In Wireless Sensor Networks (WSNs), energy
preservation techniques are essential due to the limited battery
life of sensor nodes and the often-inaccessible nature of their
deployment environments [17][18]. These methods are often
divided into two main groups: power management and power
control, as shown in the comparative analysis in Table I.

e Power control focuses on minimizing energy
consumption by adjusting the transmission range of
sensor nodes dynamically. Therefore, an effective
power control strategy allows communication between
nodes while maintaining connectivity and Quality of
Service (QoS) level for the network. Since in most off-
the-shelf sensor nodes, the transmission power
represents approximately 70% of the total energy
consumed by the node, knowledge of the environment
and reliable control of the transmission power is
essential for long-term operation of the network. The
purpose of power control is to optimize the amount of
energy used in the transmission of data while ensuring
that the connectivity between the nodes is extended
and that the overall communication quality remains
high.

e Power management consists of turning off
unnecessary radios, or an entire radio to save energy
[19]. Power management features can also be useful to
manage rechargeable batteries and prolonging the
node's life. Some of the key power management
features and techniques were: power-gating
(deactivating unused components to remove leakage
power), avoiding voltage regulators (which induce
power conversion losses), and power matching
(making sure there is no energy loss between power
supply and load demand).

e Reinforcement Learning (RL), you can take a more
dynamic, intelligent approach to power control and
management in WSNs. RL algorithms, such as Q-
learning or Deep Q-Networks, learn from the
environment and employ observations of state to adapt
actions or determine the appropriate situation in which
to reduce transmission power or transition nodes to
low-power sleep modes. These learning-based
approaches can adjust to ephemeral network
conditions, variable traffic patterns, and fluctuating
energy availability, thus enhancing energy efficiencies
and providing increased operational life for WSNs
[20]. Compared to static approaches, such as rules, RL
techniques are characterization by continual evolution
and adaptation, making them uniquely powerful for
operational environments in embedded applications—
such as WSNs—that are characteristically energy
constrained.

TABLE I. COMPARATIVE SUMMARY OF ENERGY OPTIMIZATION TECHNIQUES IN WSNS

Aspect Power Control Power Management RL-Based Approaches
Primary Goal | Minimize energy via transmission power | Reduce energy by turning off idle | Learn and adapt optimal energy-saving actions
adjustment components dynamically
Methodology | Adjust node transmission range to | Use techniques like power-gating | Use RL algorithms (e.g., Q-learning, DQN) for
maintain connectivity and QoS and avoiding voltage regulators adaptive control
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Adaptability Low — fixed rules or thresholds Moderate — rule-based but not | High — adapts to traffic, topology, and energy
workload-aware fluctuations

Energy Moderate — especially in communication- | High — reduces leakage and idle | High — optimized decisions based on system state

Saving heavy scenarios power and environment

Potential

Complexity Low to Moderate Low High - requires training and computational

support

Suitability Static or moderately dynamic WSNs Ideal for periodic sleep-wake duty | Best for dynamic, unpredictable, or mission-

cycling in sensor nodes critical WSN deployments

IV. SYSTEM ARCHITECTURES AND IMPLEMENTATION

This section describes how Reinforcement Learning (RL)
is integrated into embedded systems, emphasizing the
hardware platforms, simulation tools, control flow, energy
efficiency, and algorithm selection that are necessary to
implement intelligent embedded solutions that are resource-
constrained, adaptive, and energy-aware.

A. RL Integration in Embedded System Design

Incorporating Reinforcement Learning (RL) into the
process of embedded system design holds the potential to
develop intelligent adaptive behaviour, while improving
energy efficiency but must account for the limitations of
environments such as an embedded system with regards to
computational capabilities, memory size, and energy
constrained budgets [21], all while ensuring responsive and
reliable performance in real-time.

In embedded systems, RL agents are typically positioned
within the system control loop - meaning that the RL agent is
able to see system states continuously (e.g., CPU temperature,
power consumption, task queue) and also observe optimal
actions (e.g., change voltage-frequency, schedule tasks, sleep
modes), and learn via closed-loop learning, creating an
autonomous learning system that can respond to workload and
environmental changes, enhancing performance and
improving battery life.

B. Key Considerations in RL Integration

o Lightweight RL Algorithms: Embedded systems
typically cannot support computationally heavy
algorithms like full-scale Deep Q-Networks (DQNs).
Therefore, lightweight and memory-efficient
algorithms such as tabular Q-learning, SARSA, or
linear function approximators are commonly used. In
more capable embedded platforms, compressed or
pruned deep neural networks can be implemented to
enable deep RL without exceeding hardware
limitations.

e On-Device vs. Offloaded Learning: On-device
learning allows for autonomous operation but may lead
to increased energy consumption due to prolonged
computation. To address this, many systems use a
hybrid learning approach training the RL model in the
cloud or on edge servers and then deploying the trained
model to the embedded device for inference only. This
reduces energy usage while still benefiting from
intelligent control.

e Control Flow Integration: The RL agent is integrated
into the system’s decision-making flow. It collects
inputs from various sensors, analyzes current
operational states, and chooses actions that optimize
predefined objectives (such as minimizing energy
usage or reducing latency) [22]. Feedback from the
environment, including the results of past actions, is
used to refine the policy over time.
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e Adaptability and Robustness: RL’s ability to learn
from real-time feedback makes it particularly suited
for non-deterministic or dynamic embedded
environments. For example, an RL-powered
embedded controller can adjust to variations in
workload intensity, temperature fluctuations, or
battery  degradation—without  requiring  pre-
programmed rules.

o Energy-Aware Learning: Specific reward functions
can be crafted to penalize energy-inefficient behaviors
and reward long-term energy conservation. This drives
the RL agent to find energy-optimal policies over time,
aligning learning objectives directly with the system’s
operational goals.

C. Simulation Tools and Hardware Platforms Used

The development and evaluation of Reinforcement
Learning (RL) techniques for embedded systems often rely on
simulation environments and specific hardware platforms to
model system behavior, validate performance, and test energy
efficiency strategies.

1) Simulation Tools

Simulation tools are essential for prototyping RL-based
control strategies before deployment on real hardware [23].
These tools offer safe, scalable, and repeatable environments
for evaluating the impact of energy-aware decisions.

e MATLAB/Simulink: Frequently used for modeling
embedded control systems with integrated RL
toolboxes for reward shaping, training, and
deployment testing.

e OpenAl Gym: Widely used for prototyping and
benchmarking RL algorithms. It can be customized to
simulate embedded system scenarios like task
scheduling or thermal management.

e NS-3: A network simulator used in Wireless Sensor
Networks (WSNs) and IoT studies, often extended
with  RL modules to simulate energy-aware
communication protocols.

e OMNeT++: Another discrete event simulator used for
networked embedded systems with support for
mobility, battery modeling, and integration of external
RL logic.

e Custom Simulators: Many studies build domain-
specific simulators to replicate specific embedded use-
cases, such as CPU-GPU scheduling, voltage scaling,
or sensor duty cycling.

2) Hardware Platforms

To wvalidate RL algorithms in real-world embedded
systems, researchers use low-power and resource-constrained
platforms that reflect deployment conditions.

e Raspberry Pi and NVIDIA Jetson Series: Used for
testing RL models in moderately resource-rich
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environments, enabling both inference and limited on-
device training.

e ARM Cortex-M and Cortex-A Platforms:
Commonly used in ultra-low-power embedded
systems. These are suitable for evaluating lightweight
RL models and dynamic power management.

e TI MSP430 and Arduino: Ultra-low-power
microcontrollers used for prototyping energy-saving
techniques in constrained environments like sensor
nodes or wearables.

e FPGA-based Platforms: Employed when custom RL
hardware acceleration or power modeling is required,
offering fine-grained control of energy consumption.

e IoT Testbeds: Platforms such as TOSSIM and FIT
[oT-LAB  offer large-scale, realistic testing
environments for RL-based energy optimization in
distributed sensor networks.

V. LITERATURE REVIEW

This literature Summary examines recent advancements in
applying reinforcement learning to energy-efficient embedded
systems, highlighting innovations in DVFS, learning rate
optimization, deep learning integration, and object detection,
while emphasizing adaptive policies, real-time performance,
and reliability across diverse embedded computing
environments.

Kumar and Sharma (2025) proposed energy-aware
paradigm for the implementation of deep learning using CNN
for real-time control in autonomous robotics for embedded
systems. The overall power efficiency of the proposed system
is achieved through efficient control of power consumption,
latency, and runtime while has minor degradation in terms of
accuracy through a number of approaches including model
pruning, quantization, and adaptive CNN scaling. Studies
show that power consumption has been cut down to as low as
47.3% thereby making the optimized system's power
consumption in obstacle avoidance tasks as low as 2.8 W, the
base system consuming up to 5.0 W power. The delay was
also lowered to 47.1% in key tasks from 20 MS, thus ensuring
more immediate decisions in real time activities [24].

Panda, Tripathy and Bhuyan (2024) presented an
innovative solution by integrating proposed Reinforcement
Learning (RL) algorithms into DVFS, addressing the
limitations of conventional methods. The proposed RL
algorithm employs Q-Learning, a model-free RL technique, to
iteratively learn the optimal policy for adjusting CPU voltage
and frequency. customized algorithm enables autonomous
real-time adjustments of voltage and frequency levels,
showcasing a remarkable 20% power saving compared to
conventional DVFS. The model's adaptability is evident in its
capacity to achieve optimal configurations across diverse
workloads, emphasizing RL's potential for enhancing energy
efficiency in computing systems [25].

Kaloev and Krastev (2023) detailed investigation and the
development of guidelines for LR selection in RL. Use a
variety of RL simulations to test the effectiveness of LR
adaptation, each with a sophisticated 18-dimensional action
space and a 128-dimensional input vector respectively. These
simulations cover a variety of RL tasks, highlighting how
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important LR selection is in different situations. Two separate
artificial neural networks (ANNs), one with 44,000
connections and the other with 27,000 hidden layer
connections, may be used to provide insights regarding LR
methods. They use a variety of customized LR values, from a
first peak of 0.25 to a pitiful 0.000000025. test both the
stability of training, where training episodes consistently
obtain scores around the average, and the cumulative agent
scores over several training episodes. Findings clarify LR
tactics that maximize stability and performance in various RL
contexts, providing academics and practitioners with
insightful advice [26].

Lyu, Shen and Zhang (2022) innovations in reinforcement
learning, such as deep reinforcement learning techniques and
traditional reinforcement learning techniques. This article
then examines the current state of advanced reinforcement
learning studies, such as large-scale study of curiosity-driven
learning, fuzzy theory-based deep reinforcement learning
techniques, distributed deep reinforcement learning
algorithms, and so on. Lastly, the difficulties that
reinforcement learning faces are covered in this essay. In
artificial intelligence, reinforcement learning is one of the
most active study areas. In contrast to other machine learning
techniques, reinforcement learning uses action mappings to
learn from the environment. Therefore, by maximizing the
environment's cumulative reward value, the selected course of
action might create an ideal plan through trial and error [27].

Tan and Karakdse (2022) implemented a deep
reinforcement learning method for object recognition on the
PASCAL Voc2012 dataset using a neural network that
constructed ourselves. method involves gradually advancing a
bounding box in the direction of the objective to completely
frame the item in the image. The developed neural network is
composed of five layers. Additionally, the reward mechanism
is optimized in order to maximize the map value. The option
made about the incentive policy undoubtedly impact the result
and be crucial to the agent's training. The outcome is improved
since the ground truth and the bounding box intersect at the
maximum rate because of the optimized reward function [28].

Yeganeh-Khaksar et al. (2021) said that increasing the
voltage and frequency might produce a decrease in task
dependability since it raises the fault rate and the jobs' worst-
case execution duration. In this letter, they propose an
improved DVFS method based on reinforcement learning to
lower the power consumption of sporadic tasks at runtime in
multicore embedded systems without task-reliability
degradation, while also achieving power savings and
maintaining task-reliability at an acceptable level. When
making judgements, the reinforcement learner takes into
account the power savings and task-reliability changes caused
by DVEFS. It also determines the appropriate voltage-
frequency level for each task so that the timing restrictions are
satisfied [29].

Table II summarizes recent studies on reinforcement
learning approaches for energy-efficient embedded systems,
highlighting methods, key findings, challenges addressed, and
potential future research directions across diverse application
domains.
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TABLE II. COMPARATIVE ANALYSIS ON REINFORCEMENT LEARNING APPROACHES FOR ENERGY-EFFICIENT EMBEDDED SYSTEMS
Author Study On Approach Key Findings Challenges Future Directions
Kumar and | Real-time control in | CNN  with model | Reduced power to | Minordegradationin | Improve model compression
Sharma (2025) autonomous robotics | pruning, quantization, | 2.8W (47.3% savings); | accuracy techniques without sacrificing
and adaptive scaling latency cut by 47.1% accuracy
Charan Bhuyan et | RL-integrated DVFS | Q-Learning (model- | 20% power saving; | Needs consistent | Extend RL-DVFS integration
al. (2024) free RL) adaptive to workload | training stability | to GPU and heterogeneous
variations across devices systems
Kaloev and | LR selection in RL | Varying LR values on | Optimized cumulative | LR sensitivity to | Design adaptive LR
Krastev (2023) training ANNs (27k and 44k | agent scores and | task-specific schedulers for diverse RL

connections)

training stability

variations

tasks

Lyu et al. (2022) Advancements in RL | Distributed RL, Fuzzy- | Surveyed multiple | Generalization  to | Develop  hybrid  models
methods RL, Curiosity-driven | advanced RL | real-world scenarios | combining RL with symbolic
learning algorithms reasoning

The reinforcement learning (RL), when incorporated into

an embedded system, provides a potential route to realize
intelligent, energy-efficient, and adaptive computation in a

resource-constrained setting.

It has been shown that

lightweight RL algorithms, integration of deep learning, and
reward-based energy optimization methods are efficient in
accelerating performance in real-time and minimizing energy
usage. Prominent breakthroughs are RL-based dynamical
voltage and frequency scaling (DVFS) and control policies to
adapt to robotic systems and neural network compression
strategies that combine efficiency and accuracy. Moreover,
RL has been found promising in solving non-deterministic
operational issues and achieving robustness in situation of
varying load and environmental conditions. The use of
simulation tools and embedded hardware platforms including
Raspberry Pi, ARM Cortex, and FPGA-based systems have

been the most crucial

in the wverification of these

methodologies prior to their implementation. Nevertheless,
there are outstanding issues that are related to on-device
training, safe exploration on policy and real-time stability.

Future works are also needed to devise scalable RL models

that offer online adaptation with minimal overhead,
incorporate sophisticated neural architectures, and build
domain-specific simulators to conduct strict testing. Further,
reliability, interpretability and safety of learning based
embedded control systems will be imperative in adoption to
safety-critical and real-time applications.
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