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Abstract—Ethereum has become one of the most significant 

cryptocurrencies in terms of transaction volume. Given 

Ethereum's recent rise, experts and the cryptocurrency 

community are eager to learn more about how Ethereum 

transactions behave. A machine learning system-based 

methodology exists for addressing Ethereum addresses to 

enable transaction classification. The preprocessing of CEAT 

dataset containing 4,371 entries with 15 features utilizes a 

systematic process that selects relevant features then handles 

missing data along with using SMOTE for class distribution 

balancing and converting categorical elements to numbers. The 

data is standardized with Min-Max Scaler to improve model 

performance. Exploratory data analysis is done by 

visualizations such as Heat map, Histogram and Pair plot to 

compute the features which are correlated. The four models of 

machine learning algorithms include Decision Tree (DT), 

LightGBM, Neighbors Classifier (KNN), and CatBoost 

Classifier, are trained with the best optimized hyperparameters. 

The classification reports, confusion matrices, and ROC curves 

are used for model evaluation for each model. Comparing these 

models, LightGBM has the highest accuracy of 91.99%, second 

is CatBoost Classifier with 91.23%, the Decision Tree is 85.16%, 

and the KNN model 78.91%. An important benefit of this study 

is that the results show that it is possible to use a machine-

learning approach for classifying Ethereum addresses to 

enhance transaction security and avoid fraud in decentralized 

financial systems. 

Keywords—Ethereum addresses, Machine Learning, Decision 

tree, K-neighbors, CatBoost and LightGBM,  

I. INTRODUCTION 

Ethereum stands as a well-known cryptocurrency. 
According to the quantity of recorded financial transactions, it 
has grown to be among the biggest cryptocurrencies at the 
moment. Since its launch in February 2020, the network has 
processed over 470M transactions, or 9 per second, and the 
resulting market capitalization is over $27 billion USD. 
Furthermore, Ethereum's primary benefit over Bitcoin, the 
original cryptocurrency, has been thought to be its ability to 
handle programmed contracts, or smart contracts, which it 
adds to its financial transactions [1][2][3].  In a cryptocurrency 
system, a distributed consensus process can determine if a 
transaction was successful or unsuccessful after it was 
executed [4][5]. Here, transaction confirmation is crucial as 
failing to do so might result in users losing their money (i.e., 
the charge paid to network operators or miners to execute a 
transaction is not reimbursed) [6][7].  

Additionally, there are no failure risks disclosed when a 
transaction enters the network to be processed. As a result, 
failures might negatively impact users' experience and 
discourage them from making future transactions [8][9][10]. 
In contrast, the distributed consensus process required to 
execute and verify each Ethereum transaction is complicated, 
and the tiny proportion of failed transactions, when taking into 
account millions of recorded transactions, makes it difficult to 
build models to forecast confirmation [11][12].  

Ethereum addresses receive primary classification through 
transaction analysis methods that provide understanding about 
user behaviors and their transaction patterns [13][14]. 
Researchers utilize machine learning methods to parse 
meaningful data patterns from the Ethereum address 
transaction records for classification between individual users, 
exchanges, miners and malicious actors [15][16][17]. Finding 
any transactions that were thought to have unusual 
characteristics would require a laborious and time-consuming 
manual search of all of these transactions. An use of ML 
methods to aid in an identification of patterns associated with 
suspicious behavior is recommended by the fast development 
of such network blocks, especially smart contracts and 
transactions [18]. Building prediction models under 
supervised learning branches of ML requires training on 
extremely large datasets containing labeled samples with their 
actual outputs noted [19]. Therefore, its usage of labeled 
datasets for model training is the primary differentiator from 
other ML types [20][21]. 

A. Motivation and Contribution  

A motivation for this research stems from the growing 
complexity and security challenges in Ethereum transactions, 
where traditional fraud detection methods fall short against 
evolving threats. With the increasing adoption of blockchain 
technology, there is a pressing need for automated, scalable, 
and high-accuracy classification models to distinguish 
between legitimate users and malicious actors. By leveraging 
advanced supervised machine learning, this study aims to 
enhance blockchain security, improve fraud detection, and 
contribute to more robust financial forensics in decentralized 
ecosystems. Here are key research contributions from this 
study on categorizing Ethereum addresses using advanced 
supervised machine learning for predictive modeling: 

• This research improves our capacity to distinguish 
between real and fraudulent transactions by 
introducing a strong supervised learning framework 
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for Ethereum address classification based on 
transactional patterns. 

• A ML evaluation of Decision Tree, LightGBM, K 
Neighbors Classifier, and CatBoost Classifier is to 
identify the most effective model. 

• SMOTE successfully resolves class imbalance, 
leading to more equitable training and improved 
generalizability across various Ethereum address 
categories. 

• The study demonstrates the impact of Min-Max Scaler 
for feature normalization, which enhances model 
performance and stability by reducing variance in 
Ethereum transaction data. 

• The study systematically evaluates model performance 
using ROC curves, confusion matrices, and 
classification reports, offering a structured approach to 
selecting the best-performing classifier. 

B. Novelty and Justification 

The novelty of this research lies in its systematic 
application of advanced supervised machine learning 
techniques to accurately categorize Ethereum addresses, 
addressing the growing complexity of blockchain 
transactions. Unlike prior studies that rely on single models or 
basic heuristics, this work provides a comparative evaluation 
of multiple high-performing algorithms—Decision Tree, 
LightGBM, Neighbors, and CatBoost highlighting their 
strengths and limitations in distinguishing diverse address 
types. This approach is justified by the pressing need for 
scalable, automated, and precise classification methods to 
improve fraud detection, enhance security, and support 
regulatory compliance in decentralized financial ecosystems. 

C. Structure of the Paper 

Here is the breakdown of the study: A review of the current 
literature on Ethereum categorization is presented in Section 
II. Methods used to gather information for this research are 
detailed in Section III. Classification of text findings and 
analysis are presented in Section IV. Finally, the conclusion is 
provided in Section V. 

II. LITERATURE REVIEW  

This section discusses the literature review on transaction 
analysis of categorizing Ethereum addresses based on 
advanced machine-learning approach for predictive modeling. 
Table I also includes the abstracts of the following research 
reviews: 

Bani-Hani, Shatnawi and Al-Yahya (2024) using deep 
learning methods, Ethereum transaction vulnerabilities may 
be categorized and detected. These transactions are 
transformed into RGB and greyscale pictures, which are 
subsequently analyzed by the binary and multi-label 
classification algorithms ResNet50, DenseNet201, 
VGG19, KNN, and RF. The best method for binary 

classification was RF, which had an accuracy rate of 86.66% 
and a score of 86.66% [22]. 

Yan and Kompalli (2023) determine whether a certain set 
of transactions follows the same course of execution on the 
current blockchain state. Their analysis of more than 1.3 
billion Ethereum transactions successfully uncovers 
suspicious behaviors linked to an accuracy of 83.8 percent 
[23]. 

Saleem et al. (2023) have used the publicly accessible 
Ethereum blockchain's tagged dataset consisting of 300 
million transactions. Using eleven feature vectors and 200 
window widths, the XGBoost classifier achieved the greatest 
attainable accuracy of 73% in predicting the function of an 
unknown address, according to the test data. An impressive 
86% accuracy rate was reached by the CNN model when it 
came to predicting labels using the dataset [24]. 

Aziz et al. (2023) proposed methods that were evaluated 
in relation to the performance and efficiency measures of other 
well-known methods for identifying fraudulent activity on 
Ethereum. These methods included KNN, LR, MLP, 
XGBoost, LGBM, RF, and SVC. With maximum accuracy, 
the recommended approach and SVC models surpass all other 
models. When used in conjunction with the suggested 
optimization approach, DL achieves a performance of 91%, 
which is somewhat better than the RF model [25]. 

Pragasam et al. (2023) illustrate that the RF, GB, and 
XGBoost classifiers for address category prediction were 
trained and evaluated using a dataset including 4371 samples. 
The XGBoost classifier outperformed all other models in this 
problem set, with a macro-averaged F1Score of 0.689 and an 
accuracy of 75.3%. The Random Forest classifier came in 
second, with a macro-averaged F1Score of 0.641 and an 
accuracy of 73.7%. With gradient boosting, the accuracy rate 
was 73% [26]. 

Dritsas and Trigka (2023) conducted experiments with 
various supervised ML models to identify early-stage 
symptoms of SARS-CoV-2 infection. The results 
demonstrated that the Stacking ensemble model achieved the 
best results, with accuracy, precision, recall, and F-measure of 
90.9% [27].  

Recent studies on Ethereum address classification use ML 
and DL models like Random Forest, XGBoost, and CNN, 
achieving moderate to high accuracy but struggling with 
imbalanced data, closely related address types, and complex 
transactional patterns. Most focus on single models without 
systematic comparisons. The proposed work addresses these 
gaps by integrating multiple supervised models, balancing 
data, and standardizing features. This enables more accurate, 
scalable, and reliable categorization of Ethereum addresses, 
particularly for challenging or closely related classes, 
enhancing predictive modeling for blockchain transaction 
monitoring. 

TABLE I.  SUMMARY OF LITERATURE REVIEW TRANSACTION ANALYSIS OF ETHEREUM BASED ON MACHINE LEARNING APPROACHES 

Author Dataset Methods Key Findings Accuracy Limitation / Gap 

Bani-Hani, 

Shatnawi & Al-

Yahya (2024) 

Ethereum transactions 

transformed into RGB 

and greyscale images 

ResNet50, 

DenseNet201, VGG19, 

KNN, RF 

RF was best for binary 

classification, achieving 

highest accuracy and score 

86.66% Limited to image-based 

representation; scope for feature-

based analysis 

Yan & 
Kompalli 

(2023) 

>1.3 billion Ethereum 
transactions 

Unsupervised analysis 
of execution flow 

patterns 

Detects suspicious behavior 
with high accuracy by 

analyzing transaction 

execution flow 

83.8% Focused on execution sequence 
patterns, lacks diverse feature 

usage 
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Saleem et al. 
(2023) 

Public Ethereum 
dataset (300 million 

transactions) 

XGBoost, CNN XGBoost achieved 73% 
accuracy; CNN achieved 

86% accuracy for address 

function prediction 

86% 
(CNN) 

Limited feature engineering detail; 
black-box nature of CNN 

Aziz et al. 
(2023) 

Not specified KNN, LR, MLP, 
XGBoost, LGBM, RF, 

SVC, Deep Learning 

(DL) 

DL achieved highest 
performance (91%) in 

combination with 

optimization techniques, 
surpassing RF and others 

91% Dataset details not provided; lacks 
explainability of DL models 

Pragasam et al. 

(2023) 

4371 samples RF, GB, XGBoost XGBoost outperformed 

others: Macro F1-score 
0.689, accuracy 75.3%; RF 

followed with 73.7% 

accuracy 

75.3% Small dataset size; limited 

scalability to real-world datasets 

Dritsas & 
Trigka (2023) 

Medical dataset 
(SARS-CoV-2) 

Various supervised ML 
models, Stacking 

ensemble 

Stacking ensemble achieved 
best results: Accuracy 

90.9%, high precision, recall, 

and F-measure 

90.9% Related to medical domain, not 
blockchain-specific 

III. METHODOLOGY 

Figure 1 demonstrates the process flow of the proposed 
technique for classifying Ethereum addresses using 
supervised ML. It starts with data preparation and continues 
with visualization, model training, and performance 
assessment. The CEAT dataset, containing 4,371 entries and 
15 features, undergoes cleaning by removing unnecessary 
columns, handling missing values, encoding categorical 
variables, and balancing imbalanced data using SMOTE. Min-
Max Scaler standardizes the features to improve model 
performance. Exploratory Data Analysis (EDA) includes 
heatmaps, histograms, and pair plots to understand feature 
correlations. The dataset is split into an 80-20 train-test ratio, 
and four ML models—DT, LightGBM, Neighbors Classifier, 
and CatBoost Classifier are implemented with optimized 
hyperparameters. Each model is evaluated based on 
classification reports, confusion matrices, and ROC curves to 
assess predictive accuracy. Finally, model comparison is 
performed to determine the best-performing algorithm for 
Ethereum address classification.  

 

Fig. 1. Proposed Flowchart Ethereum Transaction classification using 

machine learning techniques 

A whole process of proposed methodology shows in 
Figure 1. also, each and every step is discussed below: 

A. Data Collection 

The "CEAT" project repository, created on June 30, 2023, 
appears to focus on data processing phase, contain 4371 rows 
of data and analysis. The structure suggests a workflow for 
preparing data, extracting features, and optimizing models, 
likely for machine learning or statistical analysis purposes,  

B. Data Preprocessing 

The primary first stage in data analysis is data preparation. 
It enables to convert unstructured data into a form that can be 
analyzed more effectively [28]. Data Preprocessing for 
Ethereum Classification on CEAT data:  

• Data Cleaning: The dataset, consisting of 4,371 
entries and 15 features, undergoes a cleaning process 
to ensure the removal of unnecessary or irrelevant 
columns [29]. The necessary features are identified for 
retention during this step to optimize the dataset for 
model training purposes. 

• Handling Missing Values: Methods are put in place 
to deal with datasets that include missing values. It can 
involve operations like imputing the missing 
observations or altogether dropping the rows with 
missing data if the dataset needed to be cleansed before 
the machine learning techniques were applied on them. 

• Encoding Categorical Variables: This 
transformative process refers to the conversion of 
categorical variables available within the data set into 
other types of data using the process of encoding. This 
step helps to avoid the ambiguity of categorical data, 
for example, regarding the type of transaction or the 
Ethereum address for the model input. 

C. Data Normalization Using Min-Max Scaler 

The dataset receives standardization treatment through 
normalization procedures. An essential part of data 
preparation, data scaling [30] seeks to standardize and make 
comparable all numerical properties [31]. A popular approach 
for this is Min-Max Scaler. For the purpose of normalization, 
the Min-Max Scaler method was used. Equation (1) shows the 
formula that was used to normalize the data. 

 𝑥´ =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (1) 

Where x stands for the pre-normalization value, and 
x' refers to the value that remains after normalization; one may 

Data collection (CEAT Dataset) 

Data Preprocessing 

Remove unnecessary columns

Remove null value 

Standardize data using MinMax Scaler 

Data splitting 

Training80% 

Testing20% 

 
• Implement Decision Tree 

• Implement LightGBM 

• Implement KNeighbors Classifier 

• Implement CatBoost Classifier 

Performance matrix 

Accuracy, Precision, Recall, 

F1-score and ROC Result analyzed 

Start 

Encode categorical variables 

Balance imbalanced data 

using SMOTE 

Exploratory Data Analysis (EDA) 

Classification Using Machine 

Learning Models 
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find the maximum and lowest values of the sample data by 
looking at the variables x max and x min, respectively. 

D. Balancing an Imbalanced Dataset 

The easiest way to increase the size of the minority class, 
while it may lead to overfitting, is to randomly increase the 
sample size.  By inserting duplicate instances into the training 
set using KNN, SMOTE decreases the likelihood of 
overfitting [32]. Specifically, SMOTE makes use of Equation 
(2). 

 𝑥𝑠𝑦𝑛 = 𝑥𝑖 + (𝑘𝑛𝑛 − 𝑥𝑖)𝑥𝑡 (2) 

Where t is a random integer between 0 and 1, and xi is a 
feature vector, which is known for the KNN.  

E. Data Splitting 

In order to assess the effectiveness of a model's dataset, 
data splitting is a crucial stage in machine learning models. 
Specifically, 80% of the data is used for training, while 20% 
is used for testing. 

F. Classification of ML Models with Hyperparameter 

Tuning 

In this section provide the classification machine learning 
models (Decision Tree (DT), Neighbors Classifier, 
LightGBM (LGBM and CatBoost) for the Ethereum 
Transaction classification on CEAT data 

1) K-Nearest Neighbor (KNN) Classifier 
Regression and classification are two applications of the 

ML technique KNN. Using the labels or values of the KNN 
linked to the new data point in the training set, one may predict 
the new data point's label or value [33]. Simply said, KNN 
saves the complete training dataset, therefore training time is 
unnecessary. The "k" in k-nearest neighbors indicates that the 
method may consider any specified number of neighbors in 
the training set, rather than only the neighbor to the close-by 
data point. kNN is one of the algorithms that make up the 
instance-based learning family. A data is pushed to a 
neighboring class with a most immediate proximity. As an 
expansion, a quantity of closest neighbors, the value of k (with 
a common choice being n_neighbors=2), precision may 
increment [34]. KNN Euclidean, Manhattan and Minkowski 
calculate as formula (3,4 and 5): 

KNN Euclidean distance Equation (3):  

 √∑ (𝑥𝑖 − 𝑦𝑖)2𝑘
𝑖=0  (3) 

KNN Manhattan distance Equation (4): 

 ∑ |𝑥𝑖 −𝑘
𝑖=1 𝑦𝑖| (4) 

KNN Minkowski distance Equation (5):  

 (∑ (|𝑥𝑖 −𝑘
𝑖=1 𝑦𝑖|)𝑞  )

1

𝑞  (5) 

Where q is a real number between zero and one. 

2) Catboost Classifier  
The CatBoost classifier is a gradient-boosting technique 

that uses binary decision trees to generate predictions and is 
particularly good at handling category information. Both 
numerical and binary answer variables may be 
accommodated.  Parameters that were set for the CatBoost 
Classifier model to achieve a compromise between training 
duration and model complexity were a depth of 6, a learning 

rate of 0.1, and 1000 iterations.  With the 'Multiclass' loss 
function and the 'Accuracy' evaluation metric, the model is 
trained to perform well on tasks involving classifications 
between several classes. The regularization parameter, 
l2_leaf_reg, is set to 3 to reduce overfitting by penalizing large 
leaf values. Lastly, to make sure the findings are reproducible 
between runs, the random state is set to 42. These settings 
were chosen to optimize model training, balancing 
performance and generalization. 

3) Light Gradient Boosting Method (LGBM) 
A fast and effective tree-based gradient enhancement 

method, Light Gradient Boosting (or "Light GBM") [35]. The 
classifier uses a tree-based approach with vertical tree 
development, which is where the term "light" appears. It 
outperforms techniques based on horizontal trees in terms of 
efficiency [36]. Large dataset processing benefits from the 
time and resource efficiency of the Light gradient boosting 
technique. Light GBM is different from other techniques in 
that it grows trees leaf-wise, or vertically, as opposed to 
horizontally, such as most other methods do. The leaf with the 
greatest delta loss will be chosen for agricultural use. 
Compared to a level-based technique, a leaf-wise approach to 
growing the same leaf may reduce waste more effectively 
[37]. The LightGBM model was configured with the 
following parameters: num_leaves set to 50, which aids in 
managing model complexity and overfitting by controlling the 
amount of leaves in each tree. A learning rate of 0.3 is used to 
balance the speed of learning and the potential for overfitting, 
ensuring faster convergence. The max_depth parameter is set 
to -1, allowing the model to grow trees without a predefined 
depth limit, promoting better fitting to the data. With 1000 
estimators, the model utilizes a sufficient number of trees to 
improve predictive accuracy. These adjustments are made 
with the main objective of maintaining high training 
efficiency as well as enhancing the model’s ability for 
complex input patterns. 

4) Decision Tree 
Data can be divided into sub-sets based on feature values 

with a DT which is a type of supervised ML model 
implemented by a tree that utilizes nodes to account for 
features as well as leaves for the outcomes. It is used in 
classification and regression techniques for the purpose of 
creating the best split which maximizes information gain or 
minimizes variance. DT are easy to interpret and can 
accommodate both numerical and categorical data and its 
main disadvantage is overfitting when the trees are deep; this 
can be resolved by pruning or even aggregation techniques 
[38]. The Decision Tree model was generated with the 
following settings of the Decision Tree Algorithm: 
criterion=log_loss, when making the decision on the best split. 
CNN splitting with splitter = ‘best’ guarantees that the chosen 
split at each node is the best possible with an outlook towards 
perfect decision boundaries. The min_samples_split=2 
enables the splitting of a node as early as there are two samples 
which helps to capture more detailed patterns in the data. 
Finally, the max_depth=10 constrains the decision trees up to 
the depth of 10 in order to avoid overfitting but at the same 
model to have sufficient level of complexity. These settings 
were chosen because they should provide high accuracy on the 
problem while being as general as possible. 

G. Performance Measures  

To evaluate each model's effectiveness, four different 
performance criteria have been used: F1-score, precision, 
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recall, and accuracy [39]. A confusion matrix is one of the 
most well-known academic performance measures used to 
analyse the outcomes. The matrix displays the outcome data 
using four main qualities; this data is the total of the outcomes 
from classifications.  A result is considered true positive (TP) 
if the actual value of the classification equals the expected 
value. Similar in nature, true negative (TN) principles are 
centered on zero. A false negative (FN) happens when the 
opposite is true, while a false positive (FP) happens when the 
expected value is 1 but the actual value is 0. 

1) Accuracy (Acc) 
Accuracy is the ratio of correctly classified cases to the 

total error in class prediction. The accuracy Equation (6) is: 

 𝐴𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑁+𝐹𝑃
 () 

2) Precision (Prec) 
Precision refers to the degree of accuracy in assigning 

instances to the correct class. Precision is formulated in 
Equation (7): 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 () 

3) Recall (Rec) 
This context calculates the percentage of all bearers of the 

ailment that the classifier correctly represents. Recall is 
Equation (8). 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 () 

4) F1-score 
When rec and prec are weighted harmonically, the result 

is the F1-score, also called the F-measure Equation (9): 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 () 

5) ROC Curve 
The ROC curve and AUC score are shown to evaluate the 

model's class-differentiation capabilities. 

The accuracy and efficacy of the model in forecasting the 
CEAT variable are shown by these indicators taken together. 

IV. RESULT ANALYSIS AND DISCUSSION 

The experimental results for Ethereum Transaction 
classification using ML techniques on the CEAT dataset 
model are shown in this part. Performance metrics, including 
Rec, Acc, Prec, and F1-score, are examined, along with the 
classification report and ROC confusion matrix. To meet the 
computational requirements of the suggested models, a 
hardware platform with an NVIDIA GTX 1660i GPU with 8 
GB of VRAM and 16 GB of RAM was installed. This 
platform included the Python programming language, Jupyter 
Notebook, Google Colab, and Python Sk-learn, NumPy, 
seaborn, Pandas, and matplotlib, among other libraries and 
toolboxes. The results for classification of Ethereum 
transactions using approaches mentioned above are 
demonstrated further in this sections with the help of CEAT 
data visualization and analysis. 

A.  Data Analysis and Visualization  

The CEAT dataset also contains number balance, 
transaction frequency and volume of transaction which is 
transformed into a balanced dataset for testing the address 
categorization systems. This dataset is categorized into three 
distinct classes of Ethereum addresses, enabling the 
development and evaluation of supervised ML models for 

predictive analytics. The goal is to enhance the detection and 
classification of address behaviors, ensuring robust and 
accurate categorization in the Ethereum blockchain ecosystem 
dataset. 

 

Fig. 2. Heatmap of CEAT dataset  

The following Figure 2, the heatmap of the CEAT dataset 
image, depicts a correlation matrix, visualizing the pairwise 
correlations between multiple variables. The color intensity 
ranges from dark red (strong positive correlation) to dark 
shades (neutral or negative correlations). Closer numbers near 
1 show a very positive connection, whereas those closer to -1 
show a highly negative association. 

 

Fig. 3. Distribution in histogram CLEAT dataset 

The following Figure 3 shows the distribution series of 
histogram plots representing the distribution of various 
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features in a dataset. The features include transactional and 
balance-related metrics for Ethereum accounts. The first plot 
shows the "category" feature, which seems to be categorical 
with values distributed across a range. Features associated 
with Ethereum transactions, such as eth_balance, 
time_diff_between_first_and_last_in_min, txns_sent, 
total_eth_sent, average_eth_sent, and others, have very 
skewed distributions, with the majority of values centred 
around zero and a small number of severe outliers. This 
pattern is consistent across features for both sent and received 
transactions, including the number, total, average, minimum, 
and maximum values, as well as the average time between 
transactions. 

 

Fig. 4. Bar graphs count of values in series y after and before SMOTE 

Figure 4 shows a bar graph comparing the count of values 
in series "y" before and after applying SMOTE. Before 
SMOTE, a significant class imbalance exists, with one 
dominant value (likely "5"). After SMOTE, the minority 
classes are augmented, and the distribution becomes more 
balanced, confirming SMOTE's effectiveness in addressing 
class imbalance for improved model performance. 

B. Experiment results 

This section presents the experiment results of the used ML 

models in terms of performance metrics for Ethereum 

Transaction categorization in table and graph style. 

TABLE II.  PROPOSED MODELS PERFORMANCE ON CEAT DATASET 

FOR ETHEREUM TRANSACTION CLASSIFICATION 

Measure DT LightGBM KNN CatBoost 

Accuracy 85.16 91.99 78.91 91.23 

Precision 84.85 91.89 78.49 91.11 

Recall 85.16 91.99 78.91 91.23 

F1-score 84.92 91.93 78.06 91.13 

Table II presents the performance of four ML models—
DT, LightGBM, KNN, and CatBoost on the CEAT dataset for 
Ethereum Transaction classification, as measured by Recall, 
Accuracy, Precision, and F1-score. LightGBM and CatBoost 
demonstrate superior performance, achieving accuracy scores 
above 91%, while DT achieves a moderate accuracy of 
85.16%. KNN exhibits the lowest performance among the 
four, with an Acc of 78.91%. F1score, which balances Prec 
and Rec, follows a similar trend, with LightGBM and 
CatBoost leading at around 91.93% and 91.13%, respectively, 
and KNN lagging at 78.06%. This indicates that ensemble 
methods like LightGBM and CatBoost are more effective for 
this classification task compared to traditional methods like 
DT and KNN. 

 

Fig. 5. Confusion matrix of Decision Tree 

The Decision Tree performs well for several Ethereum 
address classes shown in Figure 5, achieving perfect 
classification for class 8 (308/308) and near-perfect for class 
3 (336/336). Classes 1, 2, and 4 also show strong accuracy 
with 292, 322, and 288 correct predictions, respectively. 
However, the model struggles with classes 5, 6, and 7, 
showing notable misclassifications—class 5 is confused with 
classes 0–2, class 6 with classes 5 and 7, and class 7 with class 
6. These results suggest effective classification for distinct 
patterns but difficulty distinguishing closely related address 
types, indicating potential benefits from enhanced feature 
engineering or ensemble approaches. 

 

Fig. 6. Classification report of Decision tree 

The DT achieves an overall Acc of 85% in classifying nine 
Ethereum address categories, shows in Figure 6. It performs 
exceptionally for classes 3 and 8 (Prec, Rec, and f1score 0.98–
0.99) and well for classes 0, 1, 2, and 4 (f1-score 0.90–0.95). 
However, classes 5, 6, and 7 show weaker performance, with 
f1-scores of 0.76, 0.56, and 0.67, respectively, indicating 
difficulty distinguishing these closely related address types. 
Macro and weighted averages match the overall accuracy, and 
support values suggest that performance gaps arise from 
feature similarity rather than class imbalance. 

 

Fig. 7. Roc curve of Decision Tree 
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Figure 7 displays the Decision Tree ROC curves, which 
provide solid discriminative performance with AUC values 
ranging from 0.91 to 1.00. The model achieves perfect 
separation for the "Upbit Hack" class (AUC = 1.00) and near-
perfect for "Mining" (AUC = 0.99), while classes like 
"Exchange," "Gitcoin Grants," "ICO Wallets," and "Others 
(boggy)" score 0.96–0.98. Even weaker-performing classes 
maintain good AUCs (0.91–0.94). Micro- and macro-average 
AUCs of 0.97 and 0.96 confirm high overall predictive ability, 
validating the Decision Tree’s effectiveness in distinguishing 
various Ethereum address categories despite some 
misclassifications. 

 

Fig. 8. Confusion matrix of LightGBM model 

The LightGBM model demonstrates excellent 
classification across 9 Ethereum transaction classes, shown in 
Figure 8, with strong diagonal performance indicating 
accurate predictions. Most classes show minimal confusion, 
except for classes 6 and 7, which have mutual 
misclassifications (94 and 88 instances respectively). Overall, 
the model outperforms the previously analyzed Decision Tree 
model with clearer classification boundaries. 

 

Fig. 9. Classification report of LightGBM model 

The LightGBM classification report shows exceptional 
performance across most classes, shown in Figure 9. Classes 
0-5 and 8 achieve outstanding metrics with Prec, Rec, and 
F1scores ranging from 0.95 to 1.00. Class 3 achieves perfect 
precision and near-perfect recall, while Class 4 shows perfect 
recall. However, Classes 6 and 7 show relatively lower 
performance, with F1scores of 0.66 and 0.73 respectively, 
indicating some classification challenges. The model 
performs robustly over the 2,898 total data, achieving a good 
overall accuracy of 0.92 with constant weighted and macro 
averages. 

 

Fig. 10. Roc curve for LightGBM model 

An ROC curves for a LightGBM model demonstrate 
exceptional classification performance across all transaction 
types, as shown in Figure 10. Most classes, including 
Exchange, Gitcoin Grants, ICO Wallets, Mining, Others 
(Dodgy), Others (Legal), and Upbit Hack, achieve perfect 
AUC scores of 1.00. The Phishing/Hack class shows strong 
performance with an AUC of 0.96, while Scamming 
transactions achieve an AUC of 0.97. Results from the 
Decision Tree model are greatly outperformed by the model, 
as shown by the micro-average ROC curve (AUC=1.00) and 
macro-average ROC curve (AUC=0.99). 

 

Fig. 11. Confusion matrix of Catboost model 

Figure 11 illustrates that the CatBoost model performs 
well throughout 9 classes, with particularly good accuracy 
along the diagonal. Classes 0-4 and 8 show excellent 
prediction accuracy. Notable confusion exists between classes 
6 and 7, with 99 and 78 misclassifications, respectively. Class 
5 shows some confusion with classes 0 and 1, but maintains 
good overall performance. 

 

Fig. 12. Classification report for catBoost model 
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The CatBoost model shows excellent metrics across most 
classes shown in Figure 12, with particularly high 
performance in classes 2, 3, 4, and 8 (precision and recall 
≥0.99). Class 7's F1-score is 0.74 whereas Class 6's is 0.66, 
indicating lesser performance.  Maintaining constant macro 
and weighted averages, the model achieves a robust overall 
accuracy of 0.91. 

 

Fig. 13. Roc curve for cat Boost model 

Figure 13 displayed the ROC-AUC curves for a CatBoost 
model classifying Ethereum transactions. Most classes 
achieve perfect or near-perfect AUC scores of 1.0, indicating 
excellent discriminatory power.  Slightly lower AUCs of 0.96 
and 0.97 for "Phish/Hack" and "Scamming," respectively, 
suggest slightly reduced performance in distinguishing these 
classes, though still remarkably high. Overall, the model 
demonstrates outstanding classification capabilities across all 
transaction types. 

 

Fig. 14. Confusion matrix of KNN model 

The KNN confusion matrix shows mixed performance 
across nine Ethereum address classes, as shown in Figure 14. 
The model performs well for classes 0, 4, and 8 (306, 286, 290 
correct predictions) and solidly for classes 1, 2, and 3, though 
some misclassifications occur. Classes 5, 6, and 7 show 
notable confusion, with class 6 particularly problematic (163 
correct, 55 misclassified as class 7) and class 7 often 
misclassified as class 6. These results suggest KNN struggles 
to distinguish address types with overlapping transactional 
patterns. 

 

Fig. 15. Classification report of K-neighbors 

Figure 15 presents the classification report for K-
neighbors transaction classification.  It shows varying 
performance across classes, with classes 0, 2, 3, 4, 5, and 8 
demonstrating relatively high precision, recall, and f1-scores. 
However, classes 6 and 7 exhibit significantly lower scores, 
indicating challenges in accurately classifying these 
transaction types, impacting the overall accuracy of 0.79, 
respectively. 

 

Fig. 16. ROC curve of K-Neighbors  

Figure 16 shows the ROC curves for K-Neighbors 
transaction classification. Most classes achieve high AUCs, 
notably "Exchange" and "Upbit Hack" at 0.98. However, 
"Phish/Hack" (0.76) and "Scamming" (0.83) show lower 
performance, indicating reduced ability to distinguish these 
fraudulent classes. Overall strong but diverse performance is 
shown by the micro-average AUC of 0.93 and the macro-
average AUC of 0.92. 

 

Fig. 17. Bar graph of accuracy comaprison between proposed mdoels 

Figure 17 shows the comparison of accuracy among the 
four supervised machine learning models for Ethereum 
address classification. LightGBM achieves the highest 
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accuracy (0.92), followed closely by CatBoost (0.91), while 
Decision Tree reaches 0.85 and KNN lags at 0.79, 
highlighting the superior performance of gradient boosting 
methods for handling complex transactional patterns in the 
CEAT dataset. 

C. Discussion 

The performance comparison of various models reveals 
distinct differences in classification results shows in Table III. 
The DT model achieved an Acc of 85.16%, with Prec of 
84.85%, Rec of 85.16%, and F1score of 84.92%, indicating 
balanced performance but relatively lower compared to other 
models. LightGBM's superior accuracy (91.99%), high 
precision (91.89%), recall (91.99%), and F1-score (91.93%), 
all of which show that it effectively captures both genuine 
positives and negatives, surpasses all other models. KNN 
performed the least with an Acc of 78.91%, Prec of 78.49%, 
Rec of 78.91%, and F1score of 78.06%, showing lower 
performance. CatBoost was competitive with LightGBM, 
achieving 91.23% accuracy, 91.11% precision, 91.23% recall, 
and 91.13% F1 score. The Gaussian SVM model, with an 
accuracy of 78.47%, shows high precision (83.70%) but low 
recall (60.67%) and a poor F1-score (47.08%), indicating its 
failure in correctly identifying all positive instances. The 
AdaBoost model achieved the lowest accuracy of 67.7%, with 
a significantly high recall (98.8%), but low precision (39.3%) 
and F1-score (56.2%), highlighting its overfitting to positive 
class instances. Gradient Boosting showed moderate results 
with an Acc of 76.8%, Prec of 48%, and high Rec (97.9%) but 
a lower F1score (64.4%), indicating it is better at detecting 
positive cases but suffers from poor precision. Overall, 
LightGBM and CatBoost provide the most balanced and 
highest performance for Ethereum address classification. 

TABLE III.  COMPARISON BETWEEN PROPOSED MODELS AND ANOTHER 

MODEL PERFORMANCE FOR ETHEREUM TRANSACTION CLASSIFICATION 

Model Accuracy Precision Recall F1-score 

DT 85.16 84.85 85.16 84.92 

LightGBM 91.99 91.89 91.99 91.93 

KNN 78.91 78.49 78.91 78.06 

CatBoost 91.23 91.11 91.23 91.13 

Gaussian 

SVM[15] 

78.47 83.70 60.67 47.08 

AdaBoost[40] 67.7 39.3 98.8 56.2 

Gradient 
Boosting[40] 

76.8 48 97.9 64.4 

The proposed models for Ethereum address classification, 
including LightGBM, CatBoost, Decision Tree, and KNN, 
offer distinct advantages and implications. LightGBM and 
CatBoost have best Acc, Prec, Rec, and F1score making it 
even suitable for large-scale and real-time blockchain data 
especially when handling categorical data. Decision Tree is 
simple, clear and offers fairly balanced performance; 
however, it has comparatively low accuracy and can be 
effectively used only as a basic model. When implementing 
KNN, the results show lower efficiency, which implies it is 
suitable for the case of small data sets. However, issues such 
as high imbalance, high computational cost, overfitting and 
high model complexity still persist, and solutions include 
tuning the hyperparameters, combining shallow and deep 
learning, SMOTE method for data preprocessing, as well as 
adopting real-time implementation measures and Explainable 
AI for trustful model interpretation. 

V. CONCLUSION AND FUTURE WORK 

This research effectively shows how supervised ML can 
be used for classifying Ethereum addresses to improve the 
categorization of transactions. This means leaving a strong 
foundation for an effective data training since the 
methodology involved data preprocessing, feature selection, 
SMOTE-based data balancing and the Min-Max scaler 
normalization. DT, LightGBM, KNN, and CatBoost 
Classifier four classification models were developed and 
validated using several performance measures. In other words, 
the results indicated that LightGBM was the most accurate of 
the models with an accuracy of 91.99% and CatBoost 
Classifier had 91.23%. Accuracy was achieved as follows; 
Decision Tree was at 85.16% while the worst performer was 
KNN with 78.91 percent. LightGBM maintained its best 
performance metrics throughout all measurements of Prec, 
Rec and F1score. These outcomes indicate that LightGBM 
and CatBoost Classifier are the most effective models for 
Ethereum address classification in this context. 

The study encounters limitations because its dataset is 
small and restricted in scope and does not account for all the 
aspects of Ethereum transactions. Supervised learning models 
restrict researchers from exploring alternative investigation 
methods during the analysis. Future studies may build a large 
database and consider incorporating from data that will 
enhance the accuracy of the model such as past addresses of 
the customer and their spending habits. It would also be 
beneficial to look into the possibility of improving the 
classification through classifying it as unsupervised learning 
methods, deep learning, and transfer learning. Real-time fraud 
detection systems using these models could also be developed 
to ensure better scalability and security for Ethereum 
transactions in dynamic environments. 
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