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Abstract—Glaucoma, cataracts, diabetic retinopathy, and 

age-related macular degeneration are among the most common 

eye disorders globally, although numerous others can also lead 

to vision loss or impairment. Despite its critical importance, 

early detection is difficult to achieve because of the sensitivity of 

the symptoms and the need for skilled interpretation of medical 

pictures. Using fundus images from the ODIR dataset, this work 

suggests an AI system powered by deep learning for automated 

identification of common eye illnesses. A multi-class 

classification utilizing a fine-tuned VGG-16 convolutional 

neural network is part of the technique, along with data 

augmentation to rectify class imbalance and preprocessing 

methods like CLAHE and Gaussian denoising. The model 

achieved impressive classification performance, with a recall of 

90.00%, an F1-score of 92.00%, a precision of 94.00%, and an 

accuracy of 98.27%. Examining the suggested model in 

comparison to DenseNet121, CNN, and VGG-16 + CNN reveals 

that it offers a better equilibrium between recall and precision. 

In terms of scalable and dependable eye disease screening, these 

findings validate the efficacy and therapeutic promise of the 

suggested method. In addition to highlighting the significance of 

deep learning integration in medical imaging workflows, the 

paper proposes future improvements that involve attention 

mechanisms and ensemble learning to increase sensitivity. 

Keywords—Fundus Images, Deep Learning, VGG-16, Data 

Augmentation. Artificial Intelligence (AI), Automated Detection, 

Ocular Diseases, Retinal Image Classification, Convolutional 
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I. INTRODUCTION 

Numerous eye illnesses, including cataracts, AMD, 
glaucoma, DR, myopia, and hypertension-related eye 
problems, are common and, if unchecked, can cause 
significant vision loss or even blindness [1][2]. These 
conditions are particularly concerning in diabetic patients, as 
they are linked to a higher risk of mortality from ischemic 
heart disease [3]. Despite their clinical significance, early 
detection remains challenging due to the subtle or 
asymptomatic nature of early-stage symptoms. 

One common non-invasive imaging method for checking 
the retina for disease symptoms is fundus photography. 
Though effective, traditional diagnostic methods are heavily 
dependent on expert interpretation—an approach that is 
inherently subjective, labor-intensive, and difficult to scale 
[4][5]. Glaucoma, cataracts, diabetic retinopathy (DR), and 
age-related macular degeneration (AMD) are among the most 
prevalent eye diseases and conditions. When doctors look at 
the macula, optic disc, and retinal blood vessels, they can 

discover glaucoma [6][7]. However, this manual approach 
limits efficiency and consistency in large-scale screening 
scenarios. 

Automating medical diagnoses is one area where artificial 
intelligence (AI) shows promise [8][9], thanks to the fast 
development of healthcare technology [10]. Applications in 
radiology and imaging have demonstrated AI's potential to 
detect diseases earlier and uncover previously unnoticed 
pathologies [11][12]. However, many current AI systems 
remain task-specific and dependent on manually labelled 
input data, limiting their effectiveness in real-world clinical 
environments [13]. 

Deep learning (DL), a subset of AI, offers a compelling 
solution by learning directly from large volumes of medical 
images [14]. bypassing the need for handcrafted features or 
manual segmentation. The development of computer-aided 
diagnosis (CAD) systems for fundus image analysis is 
particularly well-suited to DL-based models because to their 
outstanding performance in computer vision tasks 
[15][16][17]. These models streamline disease detection 
processes and improve diagnostic accuracy by automatically 
extracting complex visual features. 

A. Motivation and Contribution  

Globally, ocular diseases account for a disproportionate 
share of cases of blindness and visual impairment. It is crucial 
to discover these diseases early on in order to treat them 
effectively and prevent irreparable damage. Manual 
inspection of fundus pictures is one example of a classic 
diagnostic procedure; nevertheless, it is subjective, takes a lot 
of time, and needs professional interpretation, all of which 
affect its scalability in real-world clinical environments.  An 
exciting possibility to create automated systems for early, 
accurate, and efficient detection of eye diseases has arisen 
thanks to the growing availability of medical imaging data and 
developments in deep learning.  This study was motivated by 
the demand to construct a model based on deep learning that 
is durable, interpretable, and scalable. The goal is to let 
doctors examine fundus photos for several ocular illnesses at 
once, making diagnostics more accessible and lowering 
clinical workload.  The study's main findings are these: 

• The ODIR dataset was used to develop a DL-based AI 
system that could multi-classify eight different types 
of ocular diseases using a fine-tuned VGG-16 model. 
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• Applying cutting-edge pre-processing techniques, like 
CLAHE for contrast enhancement and Gaussian 
denoising for image quality standards. 

• Improvements in model generalizability to under-
represented illness classes and correction of class 
imbalance through the use of targeted data 
augmentation techniques. 

• A number of performance indicators, including recall, 
accuracy, precision, F1-score, and confusion matrix, 
show that the model outperforms its rivals, 
DenseNet121 and CNN. 

• The proposed model's exceptional performance and 
practical application in diagnostic procedures set it 
apart from state-of-the-art models. 

B. Novelty and Justification 

A custom-built pre-processing and augmentation pipeline 
for multi-class eye illness identification utilizing fundus 
pictures is integrated with a fine-tuned VGG-16 deep learning 
architecture; this is the unique aspect of this work. Unlike 
prior approaches that focus on binary or limited disease 
classification, this study addresses eight distinct ocular 
conditions within a single unified framework while mitigating 
class imbalance through targeted data augmentation. Use of 
VGG-16 is warranted due to its shown efficacy in medical 
picture classification and its capacity to derive abundant 
hierarchical features with comparatively modest 
computational burden. By combining robust image pre-
processing, balanced dataset preparation, and a well-
optimized CNN model, this study offers a scalable, accurate, 
and clinically relevant solution for automated ocular disease 
screening, demonstrating its potential for real-world 
implementation in teleophthalmology and point-of-care 
diagnostics. 

C. Structure of the Paper 

The paper is structured in the following way:  In Section 
II, look at how deep learning has been used to catch eye 
diseases.  Section III details the technique that has been 
suggested, which encompasses the dataset, pre-processing, 
and model creation.  The experimental findings and analysis 
of performance are presented in Section IV.  Section V wraps 
up the research and makes recommendations for moving 
forward. 

II. LITERATURE REVIEW  

This section presents the literature review on ocular 
disease detection, highlighting recent trends, key findings, 
advantages, and future research directions. Table I 
summarizes these aspects, providing an overview of the 
methodologies and outcomes discussed. The reviewed studies 
that contribute to the ongoing advancements in ocular disease 
detection using intelligent systems are shown below: 

Kaleel and Rajakumari (2025) built a hybrid DL model 
that uses the Vision Transformer and Convolutional Neural 
Networks to detect eye disorders in fundus images. The model 
improved medical image analysis and interpretability by 
highlighting significant regions impacting classification 

decisions. Four datasets were used, with the model achieving 
87.25% training and 83.70% validation accuracy on the 
ODIR-5K dataset [18]. 

Chen et al. (2024) presented to enhance YOLOv5's 
automated diagnosis of ocular surface disorders. The CBAM 
attention module was introduced in the feature extraction 
stage of YOLOv5, and C3 module was improved to CBAMC3 
module, which enhanced the feature extraction capability and 
made the backbone network more focused on the lesion area 
of the eye surface. subsequently, the BiFPN module was 
added to the neck network to boost feature fusion and increase 
the accuracy of illness identification in pictures of the eye's 
surface.  The findings of the experiments demonstrate that 
their suggested technique achieves a 97.9% success rate in 
detecting ocular surface disorders on the test set. This allows 
for the automated identification and localization of these 
diseases, and it also has strong auxiliary diagnostic 
significance [19]. 

Li et al. (2024) provided an imaging system that is 
augmented with deep learning to automatically evaluate these 
three representative OSDs in a trustworthy and objective 
manner. In their all-inclusive pipeline, use processing 
methods that are developed from RGB and dual-mode infrared 
(IR) images. It measures OSDs accurately and consistently 
using a multi-stage deep learning algorithm. Class 
classification accuracy was 96.2% and SCH area 
identification was 0.956 (F1 score = 0.980), yielding an 
impressive 98.7% accuracy for the suggested strategy.  Their 
approach can detect MGD, a common cause of dry eyes, at an 
early stage.  With an 87.1% success rate and an F1 score of 
0.781, it detects gland morphological anomalies by 
quantitatively analyzing the meibomian gland area ratio [20]. 

Fauzi, Ismail and Ahmedy (2024) a model CNN with 600 
eye images to identify glaucoma and diabetic retinopathy. The 
entire process of training the model was carried out using a 
supervised learning method.  The model's accuracy was 
improved using many picture enhancement approaches. The 
outcome demonstrates that, after classification's evaluation, 
the model managed to obtain 97% accuracy value [21]. 

Mostafa et al. (2023) use the ODIR dataset to fine-tune the 
suggested model and run comprehensive tests to determine the 
optimal training hyperparameters.  Using the ODIR dataset, 
the results show that the suggested method achieves a recall 
of 97:99%-100% and a precision of 96-100% for binary 
classification [22]. 

Singh et al. (2022) provided a method for automated OD 
diagnosis that involved a two-stage detection process. This 
feature extraction process makes advantage of the Mobile Net 
architecture, which is well-suited to those who use 
smartphones or iPhones but do not have access to personal 
computers at home. By comparison to competing architectures 
like VGG and RESNET, this one is lightning fast. By 
validating its predictions with data from more than 1500 
patients, the network achieved an accuracy of 95.68% after 
training on 3500 patients' records [23]. 

TABLE I.  AUTOMATED OCULAR DISEASE DETECTION: A REVIEW OF CURRENT DEEP LEARNING METHODS 

References Methodology Results Analysis Advantages Limitations Future Work 

Kaleel & 
Rajakumari 

(2025) 

Hybrid CNN + ViT with 
Grad-CAM on four 

datasets (ODIR-5K, 

ODIR, Salem, RDC) 

Accuracy: up to 97%, 
Validation Loss: as low 

as 0.252 

Combines local (CNN) 
and global (ViT) features; 

interpretable via Grad-

CAM 

Training and 
validation gaps; 

limited dataset 

diversity 

Apply on real-world 
hospital datasets for 

generalizability 
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Chen et al. 
(2024) 

Modified YOLOv5 with 
CBAM-C3 and BiFPN 

modules for feature 

enhancement 

mAP: 97.9% on ocular 
surface diseases 

Accurate and efficient 
detection with 

localization; lightweight 

model 

Model may focus 
only on surface-

level abnormalities 

Extend model to broader 
ocular datasets including 

fundus images 

Li et al. (2024) Multi-stage DL model 
using RGB & IR images 

for assessing MGD and 

OSDs 

Accuracy: 98.7% 
(classification), 88.1% 

(gland detection); F1 

up to 0.980 

Dual-mode imaging; 
interpretable metrics; 

suitable for dry eye 

diagnosis 

Gland detection F1 
still below 0.8 

Improve MG region 
identification using 

hybrid CNN-transformers 

Fauzi, Ismail & 

Ahmedy (2024) 

CNN model on 600 

images; augmentation 

techniques applied 

Accuracy: 97% on 

glaucoma and DR 

Simple and effective CNN 

model; data augmentation 

helps performance 

Small dataset size; 

binary classification 

focus 

Expand to multiclass 

classification with larger 

datasets 

Mostafa et al. 
(2023) 

Binary classification on 
ODIR dataset with 

optimized 

hyperparameters 

Accuracy: 98–100%, 
Recall: 97.99–100%, 

Precision: 96–100% 

Strong binary classifier; 
high metric values 

Lacks class 
diversity; binary-

only detection 

Develop a robust multi-
class framework using 

same pipeline 

Singh et al. 

(2022) 

MobileNet for on-device 

OD detection (trained on 

5000+ samples) 

Accuracy: 95.68% Efficient for mobile 

deployment; lightweight 

May lacks 

robustness across 

high-resolution 
datasets 

Improve sensitivity and 

integrate explainability 

features 

A. Research Gap 

Despite advancements in ocular disease detection using 
CNNs, Vision Transformers, and hybrid models, key 
challenges persist. Many studies focus on binary or limited 
multi-class classification with high accuracy on curated 
datasets like ODIR or RDC but lack generalizability to diverse 
clinical environments. Interpretability methods such as Grad-
CAM remain underutilized, and explainability across all 
disease classes is often insufficient. Moreover, limited 
attention is given to lightweight model deployment for mobile 
or edge devices, crucial for remote care. Standardized 
evaluation frameworks are also missing, hindering fair 
comparison. These gaps highlight the need for robust, 
explainable, and deployable models for real-world clinical 
use. 

III. METHODOLOGY 

Data collecting, preprocessing, augmentation, feature 
selection, model training, and performance evaluation are the 
steps in Figure 1, that make up the suggested pipeline for 
medical condition categorization based on fundus images of 
the eye. Obtain the ODIR dataset (5,000 fundus pictures 
labelled with 8 diseases) and look at it; pay close attention to 
the dataset's apparent class imbalance.  The photos are 
adjusted in size, tagged pixel-by-pixel, contrast-boosted with 
CLAHE, and denoised with a Gaussian distribution to 
guarantee uniform quality before processing.  Because there is 
a correlation between class inequality and the use of data 
augmentation techniques like flipping, rotating, and color 
modifications, samples from minority classes are artificially 
enhanced.  The dataset is split as follows: 80% goes to 
training, 10% to validation, and 10% to testing.  For each of 
the eight illness categories, a VGG-16 CNN model is used for 
categorization, and it has been fine-tuned using a SoftMax 
output layer.  The model's performance may be assessed using 
metrics including recall, accuracy, precision, F1-score, and 
confusion matrix, which can guarantee the objective and 
reliable diagnosis of all eye illnesses. 

 

Fig. 1. Flowchart for Ocular disease image classification using deep 

learning models 

A. Data Collection 

This work makes use of the ODIR dataset. When it comes 
to detecting eye illnesses using many classes, no public dataset 
comes close to it. Fundus photos were gathered from multiple 
hospitals in China and utilized to create this dataset by Shang 
gong Medical Technology Co., Ltd. This collection's fundus 
images are organized according to 8 different types of eye 
diseases.  D, cataract, glaucoma, myopia, hypertension, age-
related muscle degeneration, abnormalities/illnesses, and 
abnormalities/diseases are among the many illnesses and 
conditions that fall under these several groups.   There are two 
subsets to this dataset: training and testing.   There are 5,000 
color fundus images (CFPs) in the training set.  It has the 
capability to train on around 3,500 examples and test on the 
rest.  Figure 2 displays a few images taken from the ODIR 
dataset. 

ODIR Dataset 

Data Preprocessing 

o Image Resizing 

o Denoising 

o Data Labeling and 

Notation 

Data Splitting 

Training Data (80%) 

Testing Data (10%) 

Training Data (10%) 

Classification of model 

VGG-16 

Performance Parameters like 

accuracy, precision, recall 
and f1-score Results 

Data Augmentation 
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Fig. 2. Sample images of ODIR dataset  

Figure 2 displays the fundus images of the left and right 
eyes retrieved from the ODIR dataset.   Various eye disorders 
and conditions are depicted in these images. Some of these eye 
conditions include high blood pressure, cataracts, diabetes 
retinopathy, myopia, normal and age-related macular 
degeneration, and hypertension. 

TABLE II.  DISTRIBUTION OF THE IMAGES ACROSS CLASSES IN ODIR 

DATASET 

No. Labels Training 

Cases 

Off-Sie 

Training 

Cases 

On-Sie 

Training 

Cases 

All Cases 

1 N 1135 161 324 1620 

2 D 1131 162 323 1616 

3 G 207 30 58 307 

4 C 211 32 64 243 

5 A 171 25 47 295 

6 H 94 14 30 138 

7 M 177 23 49 249 

8 O 944 134 268 1346 

Table II presents the distribution of images across eight 
ocular disease classes in the ODIR dataset, revealing a 
significant class imbalance. The Normal (N) and Diabetic 
Retinopathy (D) classes are the most prevalent, with 1,620 and 
1,616 cases, respectively, followed by the Others (O) category 
with 1,346 instances. In contrast, Hypertension (H) and Age-
related Macular Degeneration (A) are underrepresented, with 
only 138 and 295 cases. Glaucoma (G), Cataract (C), and 
Myopia (M) demonstrate moderate representation of the case 
numbers 307, 243, and 249, respectively. The significance of 
using efficient data balancing strategies to guarantee accurate 
and equitable model performance for all illness classes is 
highlighted by this imbalance. 

 

Fig. 3. Data distribution of into ocular disease classes 

Figure 3 illustrates the distribution of patient cases across 
various ocular disease categories in the dataset, highlighting a 
pronounced class imbalance. The Normal (N) and Diabetic 

Retinopathy (D) classes each account for over 1,100 cases, 
followed by the Others (O) category with approximately 950 
cases. The groups with the fewest cases are hypertension (H), 
age-related macular degeneration (A), cataract (C), glaucoma 
(G), and myopia (M), with most classes having between 150 
and 250 cases. This imbalance emphasizes the need for 
appropriate data balancing techniques during model training 
to mitigate bias and ensure reliable performance across all 
disease categories. 

B. Data Preprocessing 

The data preprocessing phase includes essential steps such 
as image resizing, labeling, denoising, and enhancement to 
ensure optimal model input quality. All preprocessing steps—
resizing, annotation, CLAHE enhancement, and Gaussian 
filtering are briefly described below to standardize and refine 
the retinal images for accurate classification. The 
preprocessing steps are listed below: 

• Image Resizing: Standard image dimensions are 
128×128 pixels. Resizing the input images is crucial 
for conserving space and memory and lowering 
training time, even if using the original sizes for 
learning can be more advantageous. 

• Data Labelling and Annotation: Label the retinal 
images with pixel-level annotations to designate 
which pixels correspond to retinal blood vessels and 
those that do not. This labelling process serves as the 
reference data for training and evaluation. Utilize 
image annotation tools or engage experts to guarantee 
precise labelling, acknowledging the intricacies of 
retinal vascular structures [24]. 

• Denoising: The additional black pixels surrounding 
the retina are cut out of the photographs. After that, 
the photos are enhanced using the CLAHE approach. 
CLAHE enhances border and regional information, 
brightens fundus photos, and successfully improves 
low contrast medical images [25]. With an 8x8 tile 
size and a Clipping Limit of 5.0, CLAHE is applied 
to the L channel of the eye photos for improved 
contrast. It is possible for the CLAHE method to 
introduce picture noise. According to Eequation (1), 
it can get rid of it by using the Gaussian filter. 

 𝐺𝑓(𝑎, 𝑏) = 𝐴𝑒

−(𝑎−𝜆𝑎)2

2𝛽𝑎
2 + 

−(𝑏− 𝜆𝑏)2

2𝛽𝑏
2

 () 

λ and A stand for the mean and amplitude, respectively, 
while β denotes the standard deviation for variables a and b. 
Figure 4 displays the outcomes of the CLAHE and Gaussian 
filters applied on the photographs. 

 

Fig. 4. The ODIR dataset's example images before processing, labelled as 

(a) normal, (b) CLAHE, and (c) Gaussian filter. 
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C. Data Augmentation 

Data augmentation strategies were used to alleviate class 
imbalance and boost model generalization for under-
represented ocular illness classes. utilized basic changes that 
kept the labels intact, such turning the image horizontally and 
vertically, rotating it, and adjusting the brightness, saturation, 
and hue. These augmentations ensured each disease class had 
sufficient representation, reducing overfitting and supporting 
robust training.  

D. Data Splitting 

An 80:10:10 ratio was employed to partition the dataset, 
with 80% going into training the VGG-16 model, 10% into 
validation to track learning progress, and 10% into testing to 
assess generalization. A stratified sampling strategy was 
employed to maintain balanced class distribution across all 
subsets, ensuring robust and reliable performance assessment 
of the ocular disease classification model.  

E. Proposed VGG-16 Model for Image Classification 

The CNN architecture utilized for picture classification is 
VGG-16.  This idea originated with Oxford University's 
Visual Geometry Group [26].  The code for VGG-16 is easy 
to comprehend and implement since the network is basic and 
has a consistent topology across all nodes.  Several 
convolutional layers and a down sampling layer (max-
pooling) are included in each block of this model's 
convolutional architecture. The model has 13 convolutional 
layers, 3 of which are completely linked, with ReLU 
activation functions and max-pooling procedures interspersed 
to introduce non-linearity and spatial down-sampling, 
respectively. 

To carry out a multi-class classification, the last fully 
connected layer of VGG-16 is adjusted to give probability 
scores of individual classes of ocular diseases by employing 
SoftMax activation function, which is represented as Equation 
(2): 

 P(y = j|x) =  
e

zj

∑ ezkK
k=1

 (2) 

In Equation (2) P(y = j|x) is predicted probability that 
input image x is in the class j and z_j is the logit parameter of 
the class jj. The denominator sums the exponentials of all 
logits across K classes. For the ODIR dataset, K=8, 
representing the eight ocular disease categories. 

F. Performance Metrics 

Accuracy, precision, and the model's capacity to handle 
class imbalance are some of the basic performance measures 
used to assess the suggested ocular illness categorization 
model [27]. A key tool in this evaluation is the confusion 
matrix, which summarizes correct and incorrect predictions 
across all classes. The model's performance is assessed using 
this two-dimensional grid, which displays both the actual and 
projected labels.  Critical metrics like F1-score, recall, and 
accuracy can be derived from it.   Listed below are some key 
concepts: 

• The classification method accurately predicted a 
favorable outcome in cases when there were true 
positives. 

• False positives, in which the algorithm incorrectly 
anticipated a negative result as a positive one, are one 
indicator of algorithm accuracy. 

• True Negatives are examples of when the algorithm 
correctly foretold a negative result. 

• False Negatives are situations in which the algorithm 
incorrectly labelled positive results as negative. 

1) Accuracy 
This technique takes a look at the overall number of 

forecasts and compares it to the sum of all the predictions, 
positive and negative, in order to get the accuracy rate [28].    
The reliability of the model provides a comprehensive 
assessment of its predictive power.  Equation (3) provides an 
example of how it is represented:  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (3) 

2) Precision 
Precision is a measure of accuracy that is defined as the 

ratio of the number of positive forecasts to the number of 
accurate predictions.   The precision of the model is a measure 
of how well it predicts favorable outcomes. The statistical 
equations of precision is reproduced in Equation (4): 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑅
 (4) 

3) Recall 
The actual positives divided by the genuine positives is the 

formula.  The sensitivity (also known as recall) of the model 
indicates how well it can predict positive classes. Here is the 
recall formula in Equation (5): 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100 (5) 

4) F1 Score 
Precision and memorization are both stabilized by it.   

When a middle ground between accuracy and recall is 
required, the F1 score, which is a harmonic average of the two, 
can be useful. Equation (6) provides the mathematical 
expression of f1-sore: 

 𝐹1 − score =
2.TP

2.𝑇𝑃+𝐹𝑃+𝐹𝑁
 (6) 

IV. RESULT ANALYSIS AND DISCUSSION 

This sections show the outcomes of using the deep 
learning approach to find real-life eye diseases on the ODIR 
dataset.    In order to evaluate the suggested models' ability to 
classify images, numerous crucial performance indicators 
were used, such as F1-score, recall, accuracy, and precision. 
Python language was used in establishing the experiments on 
a Jupiter Notebook environment in Google Collab. Kera’s, 
TensorFlow, NumPy, Pandas, Seaborn, and Matplotlib 
libraries were used to develop models, manage data and make 
visualizations. It was introduced on a hardware environment 
with an NVIDIA RTX 3060 GPU and 12oming VRAM and 
32 Gb of RAM, which is sufficient to train and assess the 
suggested model of VGG-16 properly. The subsequent 
paragraphs explain the performance results of the suggested 
VGG-16 design on ocular diseases detection. 

TABLE III.  PERFORMANCE OF VGG-16 MODEL FOR OCULAR DISEASE 

DETECTION BY USING ODIR DATASET 

Measure VGG-16 MODEL 

Accuracy 98.27 

Precision 94.00 

Recall 90.00 

F1-score 92.00 
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The evaluation of the VGG-16 model's performance for 
eye illness diagnosis using the ODIR dataset is presented in 
Table III. This model is exceptionally strong in classification, 
with a 98.27% accuracy rate, a 94.00% precision rate, a 
90.00% recall rate, and an F1-score of 92.00%. Since the 
model can accurately identify positive examples while 
minimizing erroneous ones, these metrics indicate that the 
model is very balanced in terms of trade-off. The consistency 
between numerical values and their visual representation 
further validates the model's dependability and efficacy in 
medical image-based diagnosis of ocular disorders. 

 

Fig. 5. VGG 16 model Confusion matrix of ODIR dataset 

Figure 5 displays the VGG-16 model's confusion matrix 
for eye disease identification. It clearly shows how the model 
classifies diseases into 8 different groups. The diagonal-
dominance of the matrix is quite immense where correctly 
classified instances are noted to be 220 under class A, 160 
under class C, 160 under class O, 200 under class G, 180 under 
class H, 190 under class N, 200 under class M and 200 under 
class O. This means there is a low misclassification among 
classes since very few off-diagonal values were obtained 
limiting them to a value of 1-4. This numerical ranking 
indicates high discriminative power, robustness, and 
performance characteristics of the model to solve multi-
classification analysis of ocular diseases of a complex nature. 

 

Fig. 6. Training and Validation Curve of VGG-16 model 

Figure 6 shows the VGG-16 model's accuracy curve for 
detecting eye diseases throughout numerous epochs, both 
during training and validation.   There is a noticeable upward 
trend in the training and validation accuracy, which begins at 
0.72 and 0.76 epochs, respectively, and ends at 0.94 and 0.92 
epochs, respectively. The similarity of the two curves shows 
good generalization performance. This shows that the model 

isn't getting too accustomed to the input data and is able to 
successfully train and generalize to new data sets. 

 

Fig. 7. Training and Validation Loss curve proposed VGG-16 model 

Figure 7 shows the training and the validation loss curves 
on oversight of the proposed VGG-16 model through 
subsequent epochs, on the task of ocular disease detection. 
These two curves also exhibit a steady and smooth decease as 
the training loss is going down by approx. 0.58 to 0.18 and the 
validation loss is also going down by approx. 0.52 to 0.17. The 
fact that the two curves go close to each other and have a 
similar path shows that the model has been generalized well 
with less evidence of overfitting. This trend towards low 
values of loss implies the stable learning dynamics and the 
successful optimization of the cross-entropy loss function, 
which confirms high levels of stability and reliability of the 
model when using it to classify medical images. 

A. Comparative Discussion  

In this section, a comparative analysis of ocular disease 
detection on ODIR dataset is provided in detail using image 
classification models. The proposed VGG-16 model is 
compared to existing architecture, such as DenseNet121 [26], 
a typical CNN [25] and a hybrid VGG-16 + CNN model [27]. 
Table IV compares the most important performance 
indicators, such as recall, accuracy, precision, and F1-score.  
The overall effectiveness of each model in addressing the class 
imbalance problem and successfully identifying many types 
of eye disorders is provided by these evaluators. The review 
demonstrates the competitive aspect of the proposed VGG-16 
model, especially resulting in a high level of balance between 
the accuracy and recall of the results, which is of the essence 
to reliable and generalizable classification to real-world 
clinical practice. 

TABLE IV.  THE COMPARISON OF VGG-16 WITH CURRENT MODELS OF THE 

OCULAR DISEASE DETECTION  

Measures Proposed 

VGG-16 

DenseNet121 CNN VGG-16 + 

CNN 

Accuracy 98.27 96.20 93.81 96.00 

Precision 94.00 98.00 91.63 98.00 

Recall 90.00 96.00 85.77 96.00 

F1-score 92.00 97.00 89.51 97.00 

The comparative performance analysis between the 
proposed VGG-16 model and existing architectures—
DenseNet121, CNN, and a hybrid VGG-16 + CNN are shown 
in Table IV, demonstrates the superior classification 
effectiveness of the future approach for ocular disease 
detection. The proposed model, VGG-16 achieves 98.27 
accuracy which is higher than CNN (93.81%), DenseNet121 
(96.20%) and VGG-16 + CNN (96.00%). Although the 
precision, recall, and thus performance of DenseNet121 and 
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the hybrid model are higher (98.00% precision and 96.00% 
recall), the proposed model performs better since it has a more 
balanced performance leading to a 92.00% F1-score value. 
These findings indicate its capabilities to have consistent 
precision and recall and are therefore stable in the reduction 
of false positives and false negatives in many types of ocular 
diseases. 

The VGG-16 model proposed has several features, which 
make it more reliable to be used in clinical practices; one is 
that the model provides a high accuracy rate and a balanced 
metric performance. It is strong in that it utilizes deep feature 
extraction yet keeping the computations efficient. The 
relatively reduced recall over some of the other models may 
however indicate that there is a possibility of improvement on 
sensitivity on minority or complex cases. Further 
developments can be aimed at adding attention mechanism or 
ensemble approaches to better fine-tune the detection 
performance and better generalize to broader ocular datasets. 
Top of Form, Bottom of Form. 

V. CONCLUSION AND FUTURE WORK 

Ocular diseases can be defined as a wide array of health 
conditions in which the eye and its integrity are affected, thus, 
causing a person to experience visual impairment or even 
blindness in case it is left undiscovered at the initial stages. 
Common instances of conventional eye diseases are 
glaucoma, age-related macular degeneration, diabetic 
retinopathy, and cataracts.  In order to prevent permanent 
blindness and cure the disease quickly, a timely and accurate 
diagnosis is crucial. This study presents a DL system with a 
hierarchical architecture for automated early diagnosis of 
ocular disorders utilizing the ODIR fundus picture dataset. 
The methodology incorporates key stages such as 
standardized image preprocessing, comprising resizing, 
CLAHE-based contrast enhancement, and Gaussian filtering 
to ensure clarity and consistency of visual data. Flipping, 
rotating, and varying colors were some of the augmentation 
techniques used to fix the obvious class disparity.  With an 
impressive 94.00% precision, 98.27% accuracy, 90.00% 
recall, and 92.00% F1-score, the suggested VGG-16 
architecture modified for multiclass classification using a 
SoftMax output performed admirably. Comparative 
evaluation with established models such as DenseNet121, 
CNN, and VGG-16 + CNN highlights the superior balance of 
accuracy and consistency demonstrated by the proposed 
model, reinforcing its robustness in ocular image 
classification. Future work will focus on enhancing model 
sensitivity by integrating attention mechanisms like SE blocks 
or Vision Transformers. Ensemble learning techniques will be 
explored to improve generalization. Additionally, cross-
dataset validation will be conducted to ensure robustness 
across diverse image sources. Incorporating interpretability 
tools such as Grad-CAM will also help increase clinical 
transparency and support real-world deployment in 
ophthalmic diagnostics. 
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