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Abstract—Spatial reasoning, which involves understanding
the relationships between objects or entities in space, is a
fundamental aspect of human cognition but remains a
significant challenge for large language models (LLMs). This
paper explores spatial reasoning, a critical but challenging task
for large language models (LLMs) that requires understanding
the relationships between spatial entities points, lines, and
regions through metric, topological, directional, and order
relations. A specialized evaluation dataset focused on Australian
geography was developed to minimize pre-training bias,
featuring 239 carefully crafted spatial reasoning questions.
Fifteen prominent LLMs from OpenAl, Google, Anthropic,
Meta, and Mistral were assessed under controlled zero-shot
conditions across five key experiments: Toponym Resolution,
Metric Relations, Directional Relations, Topological Relations,
and Cyclic Order Relations. Results revealed significant
variation in model performance, with models struggling notably
in metric and cyclic order tasks, while showing relatively better
outcomes in qualitative topological reasoning. Metric relation
errors often involved underestimations of distance, directional
reasoning accuracy declined with task complexity, and cyclic
order reasoning approached random performance. Models
from Google and Anthropic demonstrated greater caution,
abstaining more frequently in the face of uncertainty,
highlighting the ongoing challenges LLMs face in mastering
complex spatial reasoning tasks.

Keywords—Spatial Reasoning, geo-foundation, LLMs,
geospatial, topological, Metric Relations, Embedding Techniques,
self-supervised training.

I. INTRODUCTION

Every day, humans use spatial reasoning to interpret items
in their surroundings. Navigation from one location to
another, identifying places by adjacent landmarks, and
avoiding collisions with other moving things would be
difficult without significant world knowledge, experience,
spatial intuition, common sense, and embodiment [1][2].
Objects' movement across space hecessitates constantly
acquiring data and deducing implicit knowledge, making
spatial reasoning an especially difficult kind of thinking [3].
Using formal techniques applied to certain data formats has
traditionally been the go-to solution for many spatial
reasoning problems, such as spatial pattern matching (finding
objects in the environment that fit a set of spatial restrictions)
[4][5]. The types of issues that traditional techniques can
tackle are limited by their processing slowness and rigidity, as
well as their tendency to employ pre-computed indexes and
data structures [6].

Recent studies have investigated the kind of world
knowledge and spatial reasoning skills that LLMs acquire
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from their extensive training data as a possible means of
developing a geo-foundation model [7][8][9]. A wide variety
of spatial data sets are readily accessible from a number of
different sources and sizes, such as trajectory data, aerial
images, geotags created by the public, results from motion
sensors, and film from dashboard cameras [10][11]. Despite
having undoubtedly encountered geographical information
during training, the extent to which general-purpose LLMs
can reason about implicit spatial correlations is unknown [12].
The importance of this subject is growing as LLMs are used
for more and more complicated tasks, some of which have a
physical basis, such as creating paths between known sites or
recommending destinations to users depending on their
position and trajectory.

This paper assesses the geospatial reasoning ability of
LLMs through experiments covering a broad range of spatial
tasks, including toponym resolution and reasoning about four
fundamental spatial relations: metric, directional, topological,
and order relationships. Previous work has shown that LLMs
possess basic spatial awareness [13][14], such as knowledge
of geocoordinates, directional relationships between major
cities, and distances between cities [15][16]. However, by
extending the tasks to cover all major spatial relations and
increasing task complexity to involve multiple spatial entities,
LLMs perform poorly, especially in complex spatial
reasoning[17]. This study is motivated by the need to
rigorously assess and improve LLMs' ability to reason about
space through unbiased, controlled experiments, ultimately
pushing the boundaries of their capabilities in real-world,
geospatial tasks.

e A new evaluation dataset centered on Australian
geography was created to minimize the influence of
pre-training memorization in LLMs, offering a more
rigorous and unbiased assessment of spatial reasoning
capabilities.

e The study systematically assessed LLMs across five
key spatial reasoning tasks Toponym Resolution,
Metric Relations, Directional Relations, Topological
Relations, and Cyclic Order Relations providing a
detailed, task-specific understanding of model
strengths and weaknesses.

e By maintaining zero-shot prompting, fixed
temperatures, and constant random seeds, the research
ensured highly controlled experimental conditions,
enabling reproducibility and reducing evaluation noise
commonly seen in LLM benchmarking.

e The observation that certain models (e.g., from Google
and Anthropic) displayed higher abstention rates
highlights important differences in model confidence
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calibration and strategies for handling
uncertainty in complex reasoning tasks.

e The study uncovered major deficiencies in LLMS'
ability to perform multi-entity and sequential spatial
reasoning, especially in cyclic order tasks and nuanced
metric relation interpretation, providing critical
insights for future model improvement and spatial
reasoning research.

spatial

This is how the remainder of the paper is structured.
Recent study evaluating LLMs' geographical knowledge is
described in Section Il. The required grounding in spatial
thinking is provided in Section IlIl. The experimental
procedure is described in Section 1V, the findings are shown
in Section V, and the commentary is presented in Section VI.
Section VII concludes with a discussion of future work in
Section VIII.

Il. RELATED WORK

Many recent works have explored the abilities and
limitations of LLMs for performing various reasoning tasks,
from math word problems [3] to place name resolution [18].
This section summarizes recent work investigating the extent
to which LLMs can reason spatially. It begins by describing
studies probing LLMs for spatial and geographic knowledge,
followed by a survey of recent efforts evaluating and
enhancing spatial reasoning in large language models. papers
on geo-foundation models and finally discuss specific
techniques proposed to enable LLMs to ingest and reason over
spatial data.

A. General Spatial and Geographic Knowledge In LLMS

Recent studies have examined the capabilities of Local
Machine Learning (LLM) tools like ChatGPT in answering
spatial-related questions. They found limitations in ChatGPT's
GIS knowledge [19], unreliability in general reasoning tasks,
and failures in generic spatial reasoning questions. LLMs also
performed poorly in planning tasks involving spatial
reasoning, such as moving objects for robotic applications.
Additionally, faults were found in map visualizations and
sketch maps generated by ChatGPT using code or ASCII
symbols.

B. Geospatial LLMS and Geo-Foundation Models

Two vision papers [20] suggest that Local Machine
Learning (LLM) has potential for geospatial databases,
performing spatial reasoning with natural language prompts.
Experiments show accurate geocoordinates and names of
cities near or far from a reference city [21]. However, LLM
cannot adapt to scales. The authors propose a geo foundation
model pre-trained on different data modalities and a generic
foundation model for human mobility data at various scales
[22]. Future work will address challenges in embeddings,
model architectures, and self-supervised tasks.

C. LLM adaptations for Geodata

A few embedding methods and model architectures have
been proposed to enable LLMs to handle certain types of
geospatial data. For trajectories of geocoordinates, [23]
propose an embedding method that uses sub-trajectory
similarity learning to pre-train trajectory representations that
can be used in downstream prediction tasks. For textual
georeferences, [24] design a pre-training task using spatial
coordinate embeddings (based on latitude and longitude)
corresponding to textual georeferences, which improve
accuracy over non-spatial methods on the downstream tasks
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of geoentity type prediction and linking to knowledge graphs.
For spatio-temporal forecasting [25], proposes a method of
tokenization and encoding to increase LLM understanding of
spatio-temporal text references. While significant headway
has been made recently in embedding geodata, there remains
a lack of self-supervised training objectives pertaining to
geospatial reasoning, which discuss further in section VII.

I1l. SPATIAL REASONING

This paper defines spatial reasoning, a task involving
understanding spatial relationships between entities or objects
in space. It discusses the challenges of addressing spatial
reasoning using LLMs, which are divided into mereology,
topology, and location proper theories. Spatial reasoning tasks
involve answering questions about spatial relations between
objects in space.

A. Spatial Entities

Spatial entities are fundamental elements of spatial data,
categorized into three types: points (X, y) in Cartesian space,
lines (shortest path among points) [26], and regions (polyline
joining points). Points represent locations, lines represent
ways, and regions represent areas. Spatial entities are essential
in understanding the physical world and are often used in
LLM questions[27].

B. Spatial Relations

The following kinds of connections describe the spatial
relationships between points, lines, and regions [25]:

o Distances between geographical objects are described
by metric relations, which may be either quantitative
(like "ten miles™) or qualitative (like "near” or "far").

e Topological relations that describe how regions, lines,
and points interact (‘equals’, ‘disjoint,” ‘intersects,’
‘touches,” ‘partially overlaps’, ‘within,” ‘contains’)
[28],

e Directional relations (such as "North,” "Left," or
"Behind") that characterize an entity's relative location
in space and

e Order relations that describe the cyclic order in which
objects appear with respect to a central coordinate[29]
(‘clockwise’ or ‘counterclockwise’).

Spatial relations enable qualitative or quantitative
descriptions of how physical places or objects in the world
interact spatially. The ability to correctly identify spatial
elements and understand the relationships between them is
essential for LLMs to provide proper answers to spatial
queries [30]. For example, city A is North of city B, and city
B is North of city C; therefore, city A is north of city C.

IV. METHODOLOGY

This section describes the procedure for testing LLMSs'
spatial thinking skills, including the models and questions that
were used. A series of experiments were designed to assess
spatial reasoning through toponym resolution and four
fundamental spatial relations: metric, directional, topological,
and order relationships.

A. Dataset

The evaluation dataset was created to minimize the impact
of specific questions on pre-training models. Australia was
chosen due to its English-speaking population and less widely
documented place names [31]. To minimize toponym
resolution, comma groups were used in questions. The dense
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population and wide-open spaces of Australia made it possible
to put the models through their paces using a mix of long and
short distance testing. Dual-naming locations allowed for
tokens less likely to be memorized in geospatial contexts. The
dataset contains 239 questions covering point, line, region,

metric, directional, topological, and cyclic relations
commonly used in spatial pattern matching.
TABLE |. SUMMARY OF MODELS EVALUATED.
Developer Model #Param $ per M/Tok
OpenAl gpt-3.5-turbo i 00.50/01.50
gpt-4 T 30.00/60.00
gpt-4-turbo i 10.00/30.00
gpt-40 t 05.00/15.00
Google gemini-1.0pro T 00.50/01.50
gemini-1.5-flash i 00.35/01.05
gemini-1.5-pro T 03.50/10.50
Anthropic | claude-3-opus i 15.00/75.00
claude-3-sonnet T 03.00/15.00
claude-3-haiku T 00.25/01.25
Meta Ilama3-70b 70b 03.20/03.20
Ilama3-8b 8b 01.60/01.60
Mistral mixtral-8x22b-instruct 39b/141b 03.20/03.20
mistral-7b-instruct 7b 01.60/01.60
B. Models

Fifteen models were selected from five leading developers
of Large Language Models, covering a range of parameter
sizes or self-reported capabilities when parameter data was
unavailable. These models were accessed through their
Application Programming Interfaces. Table | summarizes the
chosen models together with their parameters and the
estimated cost of usage. To conduct experiments, it reduced
the temperature of each model to zero and used consistent seed
values wherever possible to reduce the effect of generational
randomness.

C. Prompting

The model being tested is given each question as a separate
prompt, guaranteeing that no context is carried over from one
encounter to another. Zero-shot prompting approaches are
used, except when shaping the output format or in metric
experiments that aim to elicit reasoning through in-context
learning. The purpose of each exercise is to assess spatial
thinking, and the first prompt for each is as follows:

You are answering to evaluate spatial reasoning ability.
You will be presented a question and asked to answer. Where
there are multiple possible answers, select the most likely.
Answer as briefly as possible, preferring single-word answers
where they suffice. Where do not know the answer, it is
unanswerable or you are uncertain, return’ ICATQ’.

Prompt 1: Initial System Prompt

A current experiment dictates the following prompt. 1 fill
in the exact letters (A, B, C, etc.) that represent geographical
elements (such as cities, rivers, highways, and states) to create
the final prompts for each experiment. This structure is
described below for the second prompt.

Experiment 1: Toponym Resolution

Where is A? Format your answer as a comma-separated
list: state/county, country.

Prompt 2: Toponym Resolution Prompt

The dataset is tested using unaided toponym resolution to
identify the strong association of each term with Australia.
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Points are awarded for linking it to Australia and additional
points for complete comma groups. To provide room in the
dataset for contextual spatial reasoning, the toponym
experiment removes phrases closely linked to other nations,
leaving only unresolved toponyms. Subsequent trials use
comma groups for site specification in an effort to mitigate the
effect of toponym resolution on the assessment of spatial
reasoning [32][33].

Experiment 2: Metric Relations

The purpose of this research is to develop three different
kinds of prompts and see if LLM models can reason about
metric spatial links. A neutral city whose distance from C is
comparable to that of A and B is requested in the first neutral
prompt.

The distance from A to B is similar to the distance from C
to what other city or town?

Prompt 3: Neutral Metric Prompt

Based on previous studies [20], LLMs are shown to find
places closer to a query location when the prompt includes the
word "near,” and destinations farther distant from the query
location when the prompt includes the word "far." There are
two versions of the neutral metric prompt that have been
developed to investigate this topic further. Incorporating the
terms "near"” and "far" into the question is an attempt to gauge
whether LLMs retain a fixed understanding of those terms or
whether it can modify their meaning according to the
question's scale. The ‘near’ and ‘far’ prompts are as follows:

If A is ’ near’ to B, what is a city or town ‘near’ to C?
Prompt 4: ‘Near’ Metric Prompt

If Ais ‘far’ from B, what is a city or town ‘far’ from C?
Prompt 5: ‘Far’ Metric Prompt

Place names from all throughout Australia, including both
Indigenous and Western ones, should be used to populate the
prompts. As a measure of expected distance, find the geodesic
distance between the LLM's returned place and the query
placement C. Ideally, the distance x, which is the stated goal
distance, and the projected distance will be quite nearby. Both
distances are normalized by the country’s approximate
diameter, so error tolerance scales with x.

D. Experiment 3: Directional Relations

To determine if LLMs can reason about the spatial
relationships between multiple locations, construct a series of
prompts asking about the cardinal directionality between pairs
of entities and create 42 queries covering 18 Australian city
and town names of varying population sizelinto groups of ‘2-
way’ and ‘3-way’ constraint problems. For each group
consisting of entities A, B, and C, construct the following 2-
way and 3-way directional prompts:

A is north, northeast , northwest , south , southeast ,
southwest , east , or west of B?

Prompt 6: 2-way Directional Prompt

A is north , northeast , northwest , south , southeast ,
southwest , east , or west of B and C?

Prompt 7: 3-way Directional Prompt

Repeat this for each permutation of A, B, and C,
reordering them within the prompt text. Scoring for directional
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relations rewards specificity, with more points being awarded
for ‘northwest’ rather than ‘north’ or ‘west’ when both could
be true.

E. Experiment 4: Topological Relations

To determine if LLMs can reason about topological
relations, constructed a series of seven topological relation
prompts containing questions pertaining to each of the major
topological predicates and select points (P) from a set of city
and town names in Australia, regions (R) from a set of lakes,
parks, regions, and states in Australia, and lines (L) from a set
of highways, roadways, and riverways in Australia.

The prompts are structured as follows:
Ranging from 5,297,089 to 37

Is A geospatially equal to B ?

Is A geospatially disjoint from B ?

Does A geospatially intersect B ?

Does A geospatially touch B ?

Does A geospatially partially overlap B ?
Is A geospatially within B ?

Does A geospatially contain B ?

NoukrwdhE

Prompts 8-14: Topological Relation Prompts

populates the prompts with cities and towns of varying
populations, major waterways, and the ‘common name’ for
major roadways (i.e.,”The Pacific Highway” rather than "M1
Motorway”). The sampling was conducted across the states
and territories of Australia, including both indigenous and
western place names. The binary response "Yes' or 'No' is used
to score each answer.

F. Experiment 5: Cyclic Order Relations

To determine if LLMs can reason about cyclic order
relationships, construct a series of prompts asking about the
clockwise or counterclockwise relationship between entities.
For each group consisting of entities A, B, and C, and
construct the following prompt:

With respect to a centroid in A, is moving from B to C a
clockwise or counterclockwise direction?

Prompt 15: Cyclic Order Relation Prompt

Permute the ordering of A, B, and C within the prompt text
and measure the binary response ‘clockwise’ or
‘counterclockwise’ for each answer.

V. RESULTS

The results reveal variations in model performance across
different spatial reasoning tasks. Metric relation tests showed
significant errors in predicted distances, particularly with the
“near” keyword. Directional relations indicated that GPT
models performed better, but accuracy dropped with increased
constraints. Topological queries outperformed other types,
though line-based relations had higher errors. Cyclic order
prompts performed at random levels, highlighting reasoning
limitations. Across all tasks, Google and Anthropic models
exhibited higher abstention rates, reflecting uncertainty in
complex spatial queries. To discuss the outcomes of the
experiments described in the previous section.

A. Result 1. Metric Relations

Different kinds of prompts had different distances between
their expected and real locations, as shown in Experiment 2.
There were several instances when the distances were off by
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hundreds of km. The algorithms repeatedly selected locations
that were too close to a query point, particularly when
employing a term "near," leading to locations that were never
more than 1,000 km far.
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Fig. 1. Target vs. Predicted Distance for Far, Neutral Metrics and near’

a) The ‘'near metric prompt's estimated distance
compared to its target distance. Out of the 280 replies
from the model, 89 did not participate, and eleven
were outliers with very high projected distances.

b) The ‘far' metric prompt’s estimated distance compared
to its target distance. Out of 280 answers from the
model, 100 were abstentions and three were outliers
with very high anticipated distances.

¢) The neutral metric prompt's target distance compared
to its expected distance. It excluded four extreme
outliers with very large estimated distances and 159
non-respondents from the total of 280 model runs.

Figure 1 displays the outcomes of the 'far," 'neutral,’ and
'near' metric connection prompts. ‘A" and 'B' make up the goal
distance in Prompts 3-5, whereas 'C' and the location given by
the model make up the projected distance. When using metric
spatial reasoning, it is more accurate to place points closer to
the line drawn at y= x than further away.

B. Result 2. Directional Relations

The results for the 22 2-way directional prompts in Figure
2(a) varied across the models, with Claude-Haiku unable to
answer any question and mistral-7b again struggling because
of token over-generation. The tests for the 20 3-way prompts
summarized in Figure 2(b) show that half of the models tested
showed a significant increase in model abstention and error
rate. For comparison [13], performed pairwise directional
prompting for major cities in Australia and found the
responses to be correct in 44 out of 50 cases.

C. Result 3. Topological Relations

Topological queries generally outperform other relation
types, but line-based relations have higher error rates due to
reduced terms in training. The better performance is attributed
to qualitative nature and limited test involvement [34].

D. Result 4. Order Relations

The returned results for the cyclic order relation prompts
(Figure 4) show performance on par with random guessing
between ‘clockwise’ and ‘counterclockwise’ by the models.
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Fig. 2. Two directional relation prompts 2-way and 3-way

a) Model performance on 2-way directional relation
prompts. 2-way directional relations show gpt family
of models are stronger directional reasoners than
other models.

b) Model performance on 3-way directional relation
prompts. A third constraint decreases answer
confidence and accuracy.

Figure 2 shows the results of two directional relation
prompts 2-way and 3-way. Adding a third directional
constraint reduces model performance, and also decreases the
chance that the question was observed in an LLM’s training
data.
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Fig. 3. Error Patterns and Reasoning Challenges in Geospatial Queries

a) Higher error rates occur in line-based queries across
the evaluation set, compared to points and regions.

b) Partial Overlap relations are primarily border regions
and introduce uncertainty about ownership, which is
reflected in the higher-than-average abstention rate
across all models.

c) The GPT-3.5-turbo’s error came from a question
about whether Canberra is within the state of NSW.
The physical sense contradicts the political in this
instance, highlighting some of the reasoning
difficulties faced in geospatial computing.
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Figure 3 shows a selection of topological results reflects
broader trends in their evaluation of line-based queries
performing worse than region or point-based and a preference
towards abstaining from answering under uncertainty.
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Fig. 4. Results of cyclic order relation prompt

Figure 4 displays the outcomes of cyclic order relation
prompt. The results for cyclic order relation prompts indicate
that model performance is comparable to random guessing
between ‘clockwise’ and ‘counterclockwise.” This suggests
that the models struggle with accurately determining cyclic
order relationships, highlighting a limitation in their reasoning
capabilities for such tasks. Across the experiments, the Google
and Anthropic models consistently abstained at higher rates.

VI. DISCUSSION

The study highlights key insights into LLMs’ spatial
reasoning abilities across different relational metrics. Findings
indicate that LLMSs associate the word "near" with smaller
distance metrics and "far" with larger ones, suggesting a static
interpretation of proximity. Directional reasoning shows a gap
between pairwise and three-way relations, revealing limited
spatial inference skills beyond memorized data. Topological
relations, particularly for line entities, show poor
performance, likely due to the lower prevalence of such
relationships in training data compared to widely known cities
and regions. Similarly, order relations exhibit weak model
performance, with LLMs struggling to reason about relative
city positions, indicating limited exposure to geospatial
reasoning.

VII. FUTURE WORK

This section discusses ways to improve the spatial
reasoning abilities of LLMSs by explicitly devising embedding
techniques and self-supervised training objectives that align
with spatial tasks.

A. Embedding Techniques

The first envisages the development of novel embedding
methods for various types of geodata. To allow LLMs to learn
complex spatial relations, such as multi-way directional
relations that it shown to be a shortcoming in Experiment 3, it
proposes using an appropriate encoding scheme for that type
of information. In the spatial pattern matching domain,
complex spatial relationships are captured using graph
encodings, where relations can be made explicit using the
edges between graph nodes [22]. With the data in this format,
spatial reasoning can be formulated as graph reasoning, which
can be captured in a learning objective [35].
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B. Self-Supervised Training Tasks

Self-supervised training objectives are crucial for learning
embedding methods during pre-training. Initial methods for
pre-training spatial coordinate embeddings improve entity
type classification and linking tasks. However, more intuitive
tasks capturing two-dimensional spatial relationships are
needed. Leveraging natural language descriptions and logical
reasoning is needed for complex spatial questions. Self-
supervised training objectives can be generated through
programmatic generation of fictitious worlds [24].

C. Long Term Opportunities: Multimodal Spatial Learning

Once LLMs can be successfully pre-trained on various
types of spatial data with success in downstream tasks, it will
then be possible to leverage work in multimodal learning to
combine a variety of input modalities of geospatial data.
Doing so would enable the training of a more generic geo-
foundation model broadly capable of spatial reasoning given
new sources of spatial information, at a variety of scales. To
accomplish this goal, multimodal learning techniques that
have been successful at enabling question answering over
visual, textual, and other types of data could provide benefits
in the spatial domain [21].

VII1.CONCLUSION

Recent work has demonstrated that large language models
(LLMs) have some level of spatial awareness, such as
knowledge about geocoordinates, directional relationships
between major cities, and relative distances between cities.
This study highlights the varying performance of large
language models (LLMs) across different spatial reasoning
tasks. The models demonstrated relative strength in tasks
involving qualitative spatial relations, such as topological
reasoning, while facing challenges in more quantitative tasks
like metric distance estimation and cyclic order reasoning. The
results underscore the potential of LLMs in certain spatial
contexts, with topological relations being a particular area of
strength, while other tasks revealed areas for improvement.
Overall, the evaluation provides valuable insights into the
spatial reasoning capabilities of LLMs and contributes to the
understanding of their effectiveness in handling complex
geospatial queries. This study has several limitations,
including its focus on a specific geographic region (Australia)
and a limited set of predefined spatial reasoning tasks, which
may not fully capture the diverse challenges LLMs face in
real-world spatial reasoning. Additionally, the use of zero-shot
prompting may not exploit the models' full potential,
particularly when fine-tuned for specific tasks. Future work
could address these limitations by expanding the dataset to
cover a broader range of geographic contexts and spatial tasks,
incorporating fine-tuned models, and integrating external
geospatial data for improved accuracy. Exploring advanced
reasoning strategies, such as multi-step reasoning and better
uncertainty handling, could also enhance LLMSs' performance
in complex spatial scenarios.
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