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Abstract—Spatial reasoning, which involves understanding 

the relationships between objects or entities in space, is a 

fundamental aspect of human cognition but remains a 

significant challenge for large language models (LLMs). This 

paper explores spatial reasoning, a critical but challenging task 

for large language models (LLMs) that requires understanding 

the relationships between spatial entities points, lines, and 

regions through metric, topological, directional, and order 

relations. A specialized evaluation dataset focused on Australian 

geography was developed to minimize pre-training bias, 

featuring 239 carefully crafted spatial reasoning questions. 

Fifteen prominent LLMs from OpenAI, Google, Anthropic, 

Meta, and Mistral were assessed under controlled zero-shot 

conditions across five key experiments: Toponym Resolution, 

Metric Relations, Directional Relations, Topological Relations, 

and Cyclic Order Relations. Results revealed significant 

variation in model performance, with models struggling notably 

in metric and cyclic order tasks, while showing relatively better 

outcomes in qualitative topological reasoning. Metric relation 

errors often involved underestimations of distance, directional 

reasoning accuracy declined with task complexity, and cyclic 

order reasoning approached random performance. Models 

from Google and Anthropic demonstrated greater caution, 

abstaining more frequently in the face of uncertainty, 

highlighting the ongoing challenges LLMs face in mastering 

complex spatial reasoning tasks. 

Keywords—Spatial Reasoning, geo-foundation, LLMs, 

geospatial, topological, Metric Relations, Embedding Techniques, 

self-supervised training. 

I. INTRODUCTION 

Every day, humans use spatial reasoning to interpret items 
in their surroundings. Navigation from one location to 
another, identifying places by adjacent landmarks, and 
avoiding collisions with other moving things would be 
difficult without significant world knowledge, experience, 
spatial intuition, common sense, and embodiment [1][2]. 
Objects' movement across space necessitates constantly 
acquiring data and deducing implicit knowledge, making 
spatial reasoning an especially difficult kind of thinking [3]. 
Using formal techniques applied to certain data formats has 
traditionally been the go-to solution for many spatial 
reasoning problems, such as spatial pattern matching (finding 
objects in the environment that fit a set of spatial restrictions) 
[4][5]. The types of issues that traditional techniques can 
tackle are limited by their processing slowness and rigidity, as 
well as their tendency to employ pre-computed indexes and 
data structures [6]. 

Recent studies have investigated the kind of world 
knowledge and spatial reasoning skills that LLMs acquire 

from their extensive training data as a possible means of 
developing a geo-foundation model [7][8][9]. A wide variety 
of spatial data sets are readily accessible from a number of 
different sources and sizes, such as trajectory data, aerial 
images, geotags created by the public, results from motion 
sensors, and film from dashboard cameras [10][11]. Despite 
having undoubtedly encountered geographical information 
during training, the extent to which general-purpose LLMs 
can reason about implicit spatial correlations is unknown [12]. 
The importance of this subject is growing as LLMs are used 
for more and more complicated tasks, some of which have a 
physical basis, such as creating paths between known sites or 
recommending destinations to users depending on their 
position and trajectory. 

This paper assesses the geospatial reasoning ability of 
LLMs through experiments covering a broad range of spatial 
tasks, including toponym resolution and reasoning about four 
fundamental spatial relations: metric, directional, topological, 
and order relationships. Previous work has shown that LLMs 
possess basic spatial awareness [13][14], such as knowledge 
of geocoordinates, directional relationships between major 
cities, and distances between cities [15][16]. However, by 
extending the tasks to cover all major spatial relations and 
increasing task complexity to involve multiple spatial entities, 
LLMs perform poorly, especially in complex spatial 
reasoning[17]. This study is motivated by the need to 
rigorously assess and improve LLMs' ability to reason about 
space through unbiased, controlled experiments, ultimately 
pushing the boundaries of their capabilities in real-world, 
geospatial tasks. 

• A new evaluation dataset centered on Australian 
geography was created to minimize the influence of 
pre-training memorization in LLMs, offering a more 
rigorous and unbiased assessment of spatial reasoning 
capabilities. 

• The study systematically assessed LLMs across five 
key spatial reasoning tasks Toponym Resolution, 
Metric Relations, Directional Relations, Topological 
Relations, and Cyclic Order Relations providing a 
detailed, task-specific understanding of model 
strengths and weaknesses. 

• By maintaining zero-shot prompting, fixed 
temperatures, and constant random seeds, the research 
ensured highly controlled experimental conditions, 
enabling reproducibility and reducing evaluation noise 
commonly seen in LLM benchmarking. 

• The observation that certain models (e.g., from Google 
and Anthropic) displayed higher abstention rates 
highlights important differences in model confidence 
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calibration and strategies for handling spatial 
uncertainty in complex reasoning tasks. 

• The study uncovered major deficiencies in LLMs' 
ability to perform multi-entity and sequential spatial 
reasoning, especially in cyclic order tasks and nuanced 
metric relation interpretation, providing critical 
insights for future model improvement and spatial 
reasoning research. 

This is how the remainder of the paper is structured. 
Recent study evaluating LLMs' geographical knowledge is 
described in Section II. The required grounding in spatial 
thinking is provided in Section III. The experimental 
procedure is described in Section IV, the findings are shown 
in Section V, and the commentary is presented in Section VI. 
Section VII concludes with a discussion of future work in 
Section VIII. 

II. RELATED WORK 

Many recent works have explored the abilities and 
limitations of LLMs for performing various reasoning tasks, 
from math word problems [3] to place name resolution [18]. 
This section summarizes recent work investigating the extent 
to which LLMs can reason spatially. It begins by describing 
studies probing LLMs for spatial and geographic knowledge, 
followed by a survey of recent efforts evaluating and 
enhancing spatial reasoning in large language models. papers 
on geo-foundation models and finally discuss specific 
techniques proposed to enable LLMs to ingest and reason over 
spatial data. 

A. General Spatial and Geographic Knowledge In LLMS 

Recent studies have examined the capabilities of Local 
Machine Learning (LLM) tools like ChatGPT in answering 
spatial-related questions. They found limitations in ChatGPT's 
GIS knowledge [19], unreliability in general reasoning tasks, 
and failures in generic spatial reasoning questions. LLMs also 
performed poorly in planning tasks involving spatial 
reasoning, such as moving objects for robotic applications. 
Additionally, faults were found in map visualizations and 
sketch maps generated by ChatGPT using code or ASCII 
symbols. 

B. Geospatial LLMS and Geo-Foundation Models 

Two vision papers [20] suggest that Local Machine 
Learning (LLM) has potential for geospatial databases, 
performing spatial reasoning with natural language prompts. 
Experiments show accurate geocoordinates and names of 
cities near or far from a reference city [21]. However, LLM 
cannot adapt to scales. The authors propose a geo foundation 
model pre-trained on different data modalities and a generic 
foundation model for human mobility data at various scales 
[22]. Future work will address challenges in embeddings, 
model architectures, and self-supervised tasks.  

C. LLM adaptations for Geodata 

A few embedding methods and model architectures have 
been proposed to enable LLMs to handle certain types of 
geospatial data. For trajectories of geocoordinates, [23] 
propose an embedding method that uses sub-trajectory 
similarity learning to pre-train trajectory representations that 
can be used in downstream prediction tasks. For textual 
georeferences, [24] design a pre-training task using spatial 
coordinate embeddings (based on latitude and longitude) 
corresponding to textual georeferences, which improve 
accuracy over non-spatial methods on the downstream tasks 

of geoentity type prediction and linking to knowledge graphs. 
For spatio-temporal forecasting [25], proposes a method of 
tokenization and encoding to increase LLM understanding of 
spatio-temporal text references. While significant headway 
has been made recently in embedding geodata, there remains 
a lack of self-supervised training objectives pertaining to 
geospatial reasoning, which discuss further in section VII. 

III. SPATIAL REASONING 

This paper defines spatial reasoning, a task involving 
understanding spatial relationships between entities or objects 
in space. It discusses the challenges of addressing spatial 
reasoning using LLMs, which are divided into mereology, 
topology, and location proper theories. Spatial reasoning tasks 
involve answering questions about spatial relations between 
objects in space. 

A.  Spatial Entities 

Spatial entities are fundamental elements of spatial data, 
categorized into three types: points (x, y) in Cartesian space, 
lines (shortest path among points) [26], and regions (polyline 
joining points). Points represent locations, lines represent 
ways, and regions represent areas. Spatial entities are essential 
in understanding the physical world and are often used in 
LLM questions[27]. 

B. Spatial Relations 

The following kinds of connections describe the spatial 
relationships between points, lines, and regions [25]: 

• Distances between geographical objects are described 
by metric relations, which may be either quantitative 
(like "ten miles") or qualitative (like "near" or "far"). 

• Topological relations that describe how regions, lines, 
and points interact (‘equals’, ‘disjoint,’ ‘intersects,’ 
‘touches,’ ‘partially overlaps’, ‘within,’ ‘contains’) 
[28], 

•  Directional relations (such as "North," "Left," or 
"Behind") that characterize an entity's relative location 
in space and 

• Order relations that describe the cyclic order in which 
objects appear with respect to a central coordinate[29] 
(‘clockwise’ or ‘counterclockwise’). 

Spatial relations enable qualitative or quantitative 
descriptions of how physical places or objects in the world 
interact spatially. The ability to correctly identify spatial 
elements and understand the relationships between them is 
essential for LLMs to provide proper answers to spatial 
queries [30]. For example, city A is North of city B, and city 
B is North of city C; therefore, city A is north of city C. 

IV. METHODOLOGY 

This section describes the procedure for testing LLMs' 
spatial thinking skills, including the models and questions that 
were used. A series of experiments were designed to assess 
spatial reasoning through toponym resolution and four 
fundamental spatial relations: metric, directional, topological, 
and order relationships. 

A. Dataset 

The evaluation dataset was created to minimize the impact 
of specific questions on pre-training models. Australia was 
chosen due to its English-speaking population and less widely 
documented place names [31]. To minimize toponym 
resolution, comma groups were used in questions. The dense 
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population and wide-open spaces of Australia made it possible 
to put the models through their paces using a mix of long and 
short distance testing. Dual-naming locations allowed for 
tokens less likely to be memorized in geospatial contexts. The 
dataset contains 239 questions covering point, line, region, 
metric, directional, topological, and cyclic relations 
commonly used in spatial pattern matching. 

TABLE I.  SUMMARY OF MODELS EVALUATED. 

Developer Model #Param $ per M/Tok 

OpenAI gpt-3.5-turbo † 00.50/01.50 

gpt-4 † 30.00/60.00 

gpt-4-turbo † 10.00/30.00 

gpt-4o † 05.00/15.00 

Google gemini-1.0pro † 00.50/01.50 

gemini-1.5-flash † 00.35/01.05 

gemini-1.5-pro † 03.50/10.50 

Anthropic claude-3-opus † 15.00/75.00 

claude-3-sonnet † 03.00/15.00 

claude-3-haiku † 00.25/01.25 

Meta llama3-70b 70b 03.20/03.20 

llama3-8b 8b 01.60/01.60 

Mistral mixtral-8x22b-instruct 39b/141b 03.20/03.20 

mistral-7b-instruct 7b 01.60/01.60 

B. Models 

Fifteen models were selected from five leading developers 
of Large Language Models, covering a range of parameter 
sizes or self-reported capabilities when parameter data was 
unavailable. These models were accessed through their 
Application Programming Interfaces. Table I summarizes the 
chosen models together with their parameters and the 
estimated cost of usage. To conduct experiments, it reduced 
the temperature of each model to zero and used consistent seed 
values wherever possible to reduce the effect of generational 
randomness. 

C. Prompting 

The model being tested is given each question as a separate 
prompt, guaranteeing that no context is carried over from one 
encounter to another. Zero-shot prompting approaches are 
used, except when shaping the output format or in metric 
experiments that aim to elicit reasoning through in-context 
learning. The purpose of each exercise is to assess spatial 
thinking, and the first prompt for each is as follows: 

You are answering to evaluate spatial reasoning ability. 
You will be presented a question and asked to answer. Where 
there are multiple possible answers, select the most likely. 
Answer as briefly as possible, preferring single-word answers 
where they suffice. Where do not know the answer, it is 
unanswerable or you are uncertain, return’ ICATQ’. 

 Prompt 1: Initial System Prompt 

A current experiment dictates the following prompt.  I fill 
in the exact letters (A, B, C, etc.) that represent geographical 
elements (such as cities, rivers, highways, and states) to create 
the final prompts for each experiment. This structure is 
described below for the second prompt. 

Experiment 1: Toponym Resolution 

Where is A? Format your answer as a comma-separated 
list: state/county, country. 

 Prompt 2: Toponym Resolution Prompt 

The dataset is tested using unaided toponym resolution to 
identify the strong association of each term with Australia. 

Points are awarded for linking it to Australia and additional 
points for complete comma groups. To provide room in the 
dataset for contextual spatial reasoning, the toponym 
experiment removes phrases closely linked to other nations, 
leaving only unresolved toponyms.  Subsequent trials use 
comma groups for site specification in an effort to mitigate the 
effect of toponym resolution on the assessment of spatial 
reasoning [32][33]. 

Experiment 2: Metric Relations 

The purpose of this research is to develop three different 
kinds of prompts and see if LLM models can reason about 
metric spatial links. A neutral city whose distance from C is 
comparable to that of A and B is requested in the first neutral 
prompt. 

The distance from A to B is similar to the distance from C 
to what other city or town?  

 Prompt 3: Neutral Metric Prompt 

Based on previous studies [20], LLMs are shown to find 
places closer to a query location when the prompt includes the 
word "near," and destinations farther distant from the query 
location when the prompt includes the word "far." There are 
two versions of the neutral metric prompt that have been 
developed to investigate this topic further. Incorporating the 
terms "near" and "far" into the question is an attempt to gauge 
whether LLMs retain a fixed understanding of those terms or 
whether it can modify their meaning according to the 
question's scale. The ‘near’ and ‘far’ prompts are as follows: 

If A is ’ near’ to B, what is a city or town  ‘near’ to C? 

 Prompt 4: ‘Near’ Metric Prompt 

If A is ‘far’ from B, what is a city or town ‘far’ from C? 

 Prompt 5: ‘Far’ Metric Prompt 

Place names from all throughout Australia, including both 
Indigenous and Western ones, should be used to populate the 
prompts. As a measure of expected distance, find the geodesic 
distance between the LLM's returned place and the query 
placement C. Ideally, the distance x, which is the stated goal 
distance, and the projected distance will be quite nearby. Both 
distances are normalized by the country’s approximate 
diameter, so error tolerance scales with x. 

D. Experiment 3: Directional Relations 

To determine if LLMs can reason about the spatial 
relationships between multiple locations, construct a series of 
prompts asking about the cardinal directionality between pairs 
of entities and create 42 queries covering 18 Australian city 
and town names of varying population 𝑠𝑖𝑧𝑒1into groups of ‘2-
way’ and ‘3-way’ constraint problems. For each group 
consisting of entities A, B, and C, construct the following 2-
way and 3-way directional prompts: 

A is north, northeast , northwest , south , southeast , 
southwest , east , or west of B? 

 Prompt 6: 2-way Directional Prompt 

A is north , northeast , northwest , south , southeast , 
southwest , east , or west of B and C? 

 Prompt 7: 3-way Directional Prompt 

Repeat this for each permutation of A, B, and C, 
reordering them within the prompt text. Scoring for directional 
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relations rewards specificity, with more points being awarded 
for ‘northwest’ rather than ‘north’ or ‘west’ when both could 
be true.  

E. Experiment 4: Topological Relations 

To determine if LLMs can reason about topological 
relations, constructed a series of seven topological relation 
prompts containing questions pertaining to each of the major 
topological predicates and select points (P) from a set of city 
and town names in Australia, regions (R) from a set of lakes, 
parks, regions, and states in Australia, and lines (L) from a set 
of highways, roadways, and riverways in Australia.  

The prompts are structured as follows: 

Ranging from 5,297,089 to 37 

1. Is A geospatially equal to B ?  
2. Is A geospatially disjoint from B ? 
3. Does A geospatially intersect B ? 
4. Does A geospatially touch B ? 
5. Does A geospatially partially overlap B ?  
6. Is A geospatially within B ?  
7. Does A geospatially contain B ? 

Prompts 8-14: Topological Relation Prompts 
populates the prompts with cities and towns of varying 

populations, major waterways, and the ‘common name’ for 
major roadways (i.e.,”The Pacific Highway” rather than ”M1 
Motorway”). The sampling was conducted across the states 
and territories of Australia, including both indigenous and 
western place names. The binary response 'Yes' or 'No' is used 
to score each answer. 

F. Experiment 5: Cyclic Order Relations 

To determine if LLMs can reason about cyclic order 
relationships, construct a series of prompts asking about the 
clockwise or counterclockwise relationship between entities. 
For each group consisting of entities A, B, and C, and 
construct the following prompt: 

With respect to a centroid in A, is moving from B to C a 
clockwise or counterclockwise direction? 

Prompt 15: Cyclic Order Relation Prompt 

Permute the ordering of A, B, and C within the prompt text 
and measure the binary response ‘clockwise’ or 
‘counterclockwise’ for each answer. 

V. RESULTS 

The results reveal variations in model performance across 
different spatial reasoning tasks. Metric relation tests showed 
significant errors in predicted distances, particularly with the 
“near” keyword. Directional relations indicated that GPT 
models performed better, but accuracy dropped with increased 
constraints. Topological queries outperformed other types, 
though line-based relations had higher errors. Cyclic order 
prompts performed at random levels, highlighting reasoning 
limitations. Across all tasks, Google and Anthropic models 
exhibited higher abstention rates, reflecting uncertainty in 
complex spatial queries. To discuss the outcomes of the 
experiments described in the previous section. 

A.  Result 1. Metric Relations 

Different kinds of prompts had different distances between 
their expected and real locations, as shown in Experiment 2. 
There were several instances when the distances were off by 

hundreds of km. The algorithms repeatedly selected locations 
that were too close to a query point, particularly when 
employing a term "near," leading to locations that were never 
more than 1,000 km far. 

 

 

Fig. 1. Target vs. Predicted Distance for Far, Neutral Metrics and near’ 

a) The 'near' metric prompt's estimated distance 
compared to its target distance. Out of the 280 replies 
from the model, 89 did not participate, and eleven 
were outliers with very high projected distances. 

b) The 'far' metric prompt's estimated distance compared 
to its target distance. Out of 280 answers from the 
model, 100 were abstentions and three were outliers 
with very high anticipated distances. 

c) The neutral metric prompt's target distance compared 
to its expected distance. It excluded four extreme 
outliers with very large estimated distances and 159 
non-respondents from the total of 280 model runs. 

Figure 1 displays the outcomes of the 'far,' 'neutral,' and 
'near' metric connection prompts. 'A' and 'B' make up the goal 
distance in Prompts 3-5, whereas 'C' and the location given by 
the model make up the projected distance. When using metric 
spatial reasoning, it is more accurate to place points closer to 
the line drawn at y= x than further away.  

B. Result 2. Directional Relations  

The results for the 22 2-way directional prompts in Figure 
2(a) varied across the models, with Claude-Haiku unable to 
answer any question and mistral-7b again struggling because 
of token over-generation. The tests for the 20 3-way prompts 
summarized in Figure 2(b) show that half of the models tested 
showed a significant increase in model abstention and error 
rate. For comparison [13], performed pairwise directional 
prompting for major cities in Australia and found the 
responses to be correct in 44 out of 50 cases. 

C. Result 3. Topological Relations 

Topological queries generally outperform other relation 
types, but line-based relations have higher error rates due to 
reduced terms in training. The better performance is attributed 
to qualitative nature and limited test involvement [34]. 

D. Result 4. Order Relations 

The returned results for the cyclic order relation prompts 
(Figure 4) show performance on par with random guessing 
between ‘clockwise’ and ‘counterclockwise’ by the models. 
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Fig. 2. Two directional relation prompts 2-way and 3-way 

a) Model performance on 2-way directional relation 
prompts. 2-way directional relations show gpt family 
of models are stronger directional reasoners than 
other models. 

b) Model performance on 3-way directional relation 
prompts. A third constraint decreases answer 
confidence and accuracy. 

Figure 2 shows the results of two directional relation 
prompts 2-way and 3-way. Adding a third directional 
constraint reduces model performance, and also decreases the 
chance that the question was observed in an LLM’s training 
data. 

 

Fig. 3. Error Patterns and Reasoning Challenges in Geospatial Queries 

a) Higher error rates occur in line-based queries across 
the evaluation set, compared to points and regions. 

b) Partial Overlap relations are primarily border regions 
and introduce uncertainty about ownership, which is 
reflected in the higher-than-average abstention rate 
across all models. 

c) The GPT-3.5-turbo’s error came from a question 
about whether Canberra is within the state of NSW. 
The physical sense contradicts the political in this 
instance, highlighting some of the reasoning 
difficulties faced in geospatial computing. 

Figure 3 shows a selection of topological results reflects 
broader trends in their evaluation of line-based queries 
performing worse than region or point-based and a preference 
towards abstaining from answering under uncertainty. 

 

Fig. 4. Results of cyclic order relation prompt 

Figure 4 displays the outcomes of cyclic order relation 
prompt. The results for cyclic order relation prompts indicate 
that model performance is comparable to random guessing 
between ‘clockwise’ and ‘counterclockwise.’ This suggests 
that the models struggle with accurately determining cyclic 
order relationships, highlighting a limitation in their reasoning 
capabilities for such tasks. Across the experiments, the Google 
and Anthropic models consistently abstained at higher rates. 

VI. DISCUSSION  

The study highlights key insights into LLMs’ spatial 
reasoning abilities across different relational metrics. Findings 
indicate that LLMs associate the word "near" with smaller 
distance metrics and "far" with larger ones, suggesting a static 
interpretation of proximity. Directional reasoning shows a gap 
between pairwise and three-way relations, revealing limited 
spatial inference skills beyond memorized data. Topological 
relations, particularly for line entities, show poor 
performance, likely due to the lower prevalence of such 
relationships in training data compared to widely known cities 
and regions. Similarly, order relations exhibit weak model 
performance, with LLMs struggling to reason about relative 
city positions, indicating limited exposure to geospatial 
reasoning. 

VII. FUTURE WORK 

This section discusses ways to improve the spatial 
reasoning abilities of LLMs by explicitly devising embedding 
techniques and self-supervised training objectives that align 
with spatial tasks. 

A. Embedding Techniques 

The first envisages the development of novel embedding 
methods for various types of geodata. To allow LLMs to learn 
complex spatial relations, such as multi-way directional 
relations that it shown to be a shortcoming in Experiment 3, it 
proposes using an appropriate encoding scheme for that type 
of information. In the spatial pattern matching domain, 
complex spatial relationships are captured using graph 
encodings, where relations can be made explicit using the 
edges between graph nodes [22]. With the data in this format, 
spatial reasoning can be formulated as graph reasoning, which 
can be captured in a learning objective [35]. 
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B. Self-Supervised Training Tasks 

Self-supervised training objectives are crucial for learning 
embedding methods during pre-training. Initial methods for 
pre-training spatial coordinate embeddings improve entity 
type classification and linking tasks. However, more intuitive 
tasks capturing two-dimensional spatial relationships are 
needed. Leveraging natural language descriptions and logical 
reasoning is needed for complex spatial questions. Self-
supervised training objectives can be generated through 
programmatic generation of fictitious worlds [24]. 

C.  Long Term Opportunities: Multimodal Spatial Learning 

Once LLMs can be successfully pre-trained on various 
types of spatial data with success in downstream tasks, it will 
then be possible to leverage work in multimodal learning to 
combine a variety of input modalities of geospatial data. 
Doing so would enable the training of a more generic geo-
foundation model broadly capable of spatial reasoning given 
new sources of spatial information, at a variety of scales. To 
accomplish this goal, multimodal learning techniques that 
have been successful at enabling question answering over 
visual, textual, and other types of data could provide benefits 
in the spatial domain [21]. 

VIII. CONCLUSION 

Recent work has demonstrated that large language models 
(LLMs) have some level of spatial awareness, such as 
knowledge about geocoordinates, directional relationships 
between major cities, and relative distances between cities. 
This study highlights the varying performance of large 
language models (LLMs) across different spatial reasoning 
tasks. The models demonstrated relative strength in tasks 
involving qualitative spatial relations, such as topological 
reasoning, while facing challenges in more quantitative tasks 
like metric distance estimation and cyclic order reasoning. The 
results underscore the potential of LLMs in certain spatial 
contexts, with topological relations being a particular area of 
strength, while other tasks revealed areas for improvement. 
Overall, the evaluation provides valuable insights into the 
spatial reasoning capabilities of LLMs and contributes to the 
understanding of their effectiveness in handling complex 
geospatial queries. This study has several limitations, 
including its focus on a specific geographic region (Australia) 
and a limited set of predefined spatial reasoning tasks, which 
may not fully capture the diverse challenges LLMs face in 
real-world spatial reasoning. Additionally, the use of zero-shot 
prompting may not exploit the models' full potential, 
particularly when fine-tuned for specific tasks. Future work 
could address these limitations by expanding the dataset to 
cover a broader range of geographic contexts and spatial tasks, 
incorporating fine-tuned models, and integrating external 
geospatial data for improved accuracy. Exploring advanced 
reasoning strategies, such as multi-step reasoning and better 
uncertainty handling, could also enhance LLMs' performance 
in complex spatial scenarios. 
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