
R E S E A R C H P A P E R

Journal of Global Research in Electronics and Communication

Volume 1, No. 5May 2025
Available Online at: www.jgrec.info

© JGREC 2025, All Rights Reserved 15

Development of a 2D Car Simulation Game

Nilesh Khemani

Department of Computer Science & Application

Organization Mandsaur University

Mandsaur

nileshkhemani4@gmail.com

Abstract—This project is also a simple 2D car racing game

developed using Java Swing. The player controls a car with

keyboard keys to avoid other cars and collectibles. There are

different levels of this game, and as it goes on, they become faster

and more difficult. On collecting enough coins, the player moves

to the next level. If the car crashes into another car, the game

shows a game-over screen and restarts. It shows concepts of

game development like animation, collision detection, level

progression and user interaction in Java.

Keywords—Java Swing, 2D Car Game, Keyboard Control,

Coin Collection, Collision Detection, Game Levels, Speed

Increase, Game Over, Animation, Thread Handling, GUI

Development.

I. INTRODUCTION

In today’s world, digital world, games have now become
very essential as they serve as entertainment and learning. The
development of 2D games became available for beginners and
students with the growth of computer programming and
graphical interfaces [1]. The project is a simple 2D car racing
game made using Java Swing [2]. It is to offer interaction
between an entity (player) through the use of a keyboard, and
where the player has a car that can collect coins and avoid
other cars. Level progression, increasing difficulty and basic
animation are its features [3]. The main objective of the game
is to increase the user’s engagement by making the game as
smooth as possible and coming up with logical challenges, and
at the same time, show core programming concepts like event
handling, threading, GUI design and also collision detection
in Java [4].

II. OBJECTIVES

The aim of this project is to develop a simple 2D car racing
game utilizing Java Swing such that a user maintains control
over a car using keyboard keys to avoid other cars and collect
coins [5]. The objective of the game is to make the user have
fun while learning to develop event handling, graphic design,
collision detection, animation and other important
programming skills in java [6]. It also shows how to use games
to practice and apply core general programming concepts such
as object-oriented programming, control flow and user
interface. It has allowed students to improve their coding skills
and also helps them to get some ‘hands on’ experience in game
development [7][8]. Thus, students can enhance their skills in
problem solving, logical thinking and writing efficient code
[9].

III. TOOLS AND TECHNOLOGY

This game is developed by using the Java programming
language. Java Swing is chosen for designing graphics and
user interfaces [10]. Swing helps to create windows, buttons,

and images in the game. The car, coin, and tree images are
added using Image Icon. The game controls work with
keyboard inputs, and movement is handled using Key Event.
The game runs with the help of a loop and Thread Sleep () to
control speed [11]. Random positions for coins and cars are
set using the Random class.

IV. GAME STRUCTURES

The 2D car simulation game uses a JFrame as the main
window and a JPanel for gameplay, with freely placed
elements like cars, trees, and coins. Car movement is
controlled by arrow keys, while coins and enemy cars move
downward using loops and random positions. The game has
three levels with increasing speed, triggered by collecting
coins [12]. Collision detection ends the game on enemy
impact and increases score on coin collection. A side panel
displays speed, coins, and level using JLabels. Here are the
game structures are as follows:

• Main Frame (JFrame): This is the main game
window where everything is shown. The background
color and layout are set here.

• Game Panel (JPanel): This is where the actual game
runs. It includes the player's car, enemy cars, trees, and
coins. It uses null layout so that every component can
be placed freely using setBounds().

• Car Movement: The car is controlled using the left
and right arrow keys. Key presses are detected using
Key Listener with Key Adapter, and the car’s position
(x) is updated accordingly.

• Coin and Enemy Cars: Coins and enemy cars appear
from the top and move down the screen. Their
positions are updated in a loop using Thread.sleep() to
simulate motion. Coins are generated at random
positions using the Random class.

• Levels and Speed: The game has 3 levels. With each
level, the speed of the game increases. When the player
collects 15 coins, the level increases, and the
background logic (speed () or highspeed ()) changes
the movement speed.

• Collision Detection: The game checks for two types
of collisions:
o If the player's car touches an enemy car, an

accident happens, and a "Game Over" screen is
shown.

o If the player touches a coin, the coin count
increases.

o Labels and Score Display: The right side of the
game window shows speed, current coin count,
total coins, and current level using JLabel.

N. Khemani et al, Journal of Global Research in Electronics and Communication, 1 (1) May 2025, 07-09

© JGREC 2025, All Rights Reserved 16

V. GAME FEATURES

The 2D car simulation game includes left/right arrow key
controls, random coin generation for scoring, and increasing
speed across three levels to raise difficulty. Random cars
appear as obstacles collisions trigger a "Game Over" screen,
while collecting coins boosts the score. A side panel displays
speed, coin count, and current level for real-time feedback.
Here are the key features of game are as follows:

• Car Movement Control- The player's car can be
controlled using the left and right arrow keys. The
position of the car is updated accordingly, allowing the
player to move the car across the screen.

• Coins appear randomly on the screen- The player
must collect these coins to increase their score. Each
time a coin is collected [13], the score increases.

• Levels and Speed- The game has 3 levels. With each
level, the game's speed increases, making it more
challenging. As the player progresses, the difficulty
rises, keeping the game exciting.

• Random Car- Random cars move down the screen
and can crash into the player's car. If they crash, the
game ends, and a 'Game Over' screen shows up.
Players need to avoid random cars to keep playing.

• Collision Detection- If the player's car collides with
an enemy car, the game ends and shows a "Game
Over" screen. If the player's car collides with a coin,
the coin count increases, and the score is updated.

• Score Display- On the right side of the screen, the
current speed, the number of coins collected, the total
coins, and the current level are displayed using labels.

VI. FUTURE CHANGES

Future improvements include adding JDBC to save scores
and progress, mobile and cross-platform support for wider
access, more levels with unique challenges, and sound effects
and music to enhance player immersion. Here are several
future changes are given below:

• JDBC Integration- Future versions of the game could
integrate JDBC (Java Database Connectivity) to store
players' high scores and progress. This would allow
players to save their achievements, such as the number
of coins collected or the highest level reached, even
after they exit the game.

• Mobile and Cross-Platform Support- Making the
game available on mobile platforms (iOS and Android)
or browsers would increase its accessibility and reach
a wider audience. Mobile devices, in particular, offer
touch controls, which could be an interesting
alternative to keyboard-based controls.

• Level Progression- Adding more levels, each with
unique challenges and themes would provide more
variety in gameplay.

• Sound and Music Integration- The game lacks sound
effects and background music, which could
significantly enhance the player’s experience. Adding
engine sounds, background music, and collision sound
effects would create a more immersive experience.

VII. OUTPUTS

The development of a 2D car simulation game. The game
involves navigating a car along a tree-lined road, collecting
coins, avoiding obstacles, and progressing through multiple
levels and an early gameplay screenshot highlights the core

mechanics of coin collection and obstacle avoidance. These
visuals reflect the game's design focus on progressive
difficulty, user engagement, and arcade-style excitement.
Here are displays some Figures 1- 3 on 2D game screens are
as follows:

Fig. 1. Explosion scene with speed, coins, and level stats in game

In 2D game, a screenshot from a 2D arcade-style game
where the player navigates a path lined with trees. An
explosion graphic at the center suggests a collision, possibly
ending the current run (shows in Figure 1). On the right, game
stats display the player's speed (16), coins collected in the
current attempt (3), total coins collected (18/48), and current
level (2/3), indicating progressive gameplay with collectibles
and increasing difficulty.

Fig. 2. Game over screen from 2D car game

The dramatic "GAME OVER" screen with bold text over
a fiery explosion, indicating the end of a session in the
development of a 2D car simulation games (see in Figure 2).
It emphasizes challenge and consequence typical of arcade-
style gameplay.

Fig. 3. 2D car game: coin collection and stats display

The screenshot from a 2D car simulation game where the
player navigates a yellow car along a road bordered by trees.
An orange car appears ahead, and a coin collectible is placed

N. Khemani et al, Journal of Global Research in Electronics and Communication, 1 (1) May 2025, 07-09

© JGREC 2025, All Rights Reserved 17

in the player's path, (see in Figure 3). On the right side, a game
stats panel displays speed (5), coins collected in the current
run (2), total coins collected (2/45), and current level (1/3).
The scene reflects early gameplay, focused on collecting coins
while avoiding obstacles.

VIII. CONCLUSION

This project successfully demonstrates the development of
a simple yet engaging 2D car racing game using Java Swing.
It highlights essential programming concepts such as event
handling, multithreading, collision detection, and GUI
development. The game's structure promotes interactive
gameplay by allowing players to control a car, avoid obstacles,
and collect coins to progress through increasing levels of
difficulty. By implementing game logic with smooth
animations and real-time feedback, the project provides an
enjoyable user experience while serving as a valuable learning
tool for students and beginners in Java programming. Future
enhancements like JDBC integration, mobile compatibility,
additional levels, and sound effects can significantly improve
the game's appeal and functionality. Overall, the project
blends entertainment and education, fostering logical
thinking, problem-solving, and hands-on coding skills in
game development.

REFERENCES

[1] D. Loiacono, “Learning, Evolution and Adaptation in Racing

Games,” in Proceedings of the 9th Conference on Computing
Frontiers, 2012, pp. 277–284.

[2] A. Balasubramanian, “Improving Legacy Software Quality

through AI-Driven Code Smell Detection,” ESP J. Eng. Technol.
Adv., vol. 1, no. 1, pp. 245–253, 2021.

[3] J. Roettl and R. Terlutter, “The same video game in 2D, 3D or
virtual reality – How does technology impact game evaluation and

brand placements?,” PLoS One, vol. 13, no. 7, pp. 1–24, 2018, doi:

10.1371/journal.pone.0200724.

[4] A. Chandratreya, S. Dodda, N. Joshi, D. D. Rao, and N. Ramteke,

“Robotics and Cobotics: A Comprehensive Review of

Technological Advancements, Applications, and Collaborative

Robotics in Industry,” Int. J. Intell. Syst. Appl. Eng., vol. 12, no.
21, pp. 1027–1039, 2024.

[5] P. Chatterjee and A. Das, “Enhancing Software Security: A

Research-Driven Automation Framework,” Int. J. Sci. Res.

Manag., vol. 12, no. 12, pp. 1793–1803, Dec. 2024, doi:
10.18535/ijsrm/v12i12.ec03.

[6] K. Pillai, “Design and Implementation of 2D Game Sprites in
Java,” in 35th Annual Conference of The Pennsylvania Association
of Computer and Information Science Educators, 2018.

[7] S. P. Kalava, “Enhancing Software Development with AI-Driven
Code Reviews,” North Am. J. Eng. Res., vol. 5, no. 2, pp. 1–7,
2024.

[8] S. V. Inamdar, R. Kumar, and S. Chow, “Method and system for
multistage candidate ranking,” 2023

[9] N. V. M. Bindu and S. Singamsetty, “Enhancing Student
Engagement and Outcomes through an Innovative Pedagogy for

Teaching Big Data Analytics in Undergraduate Level,” Int. J.

Comput. Math. Ideas, vol. 16, no. 1, pp. 2000–2011, 2024.

[10] K. Logiraj, “Implementation of Java Based Racing Game, Pirate

Race, Using Runnable Interface,” Asian J. Res. Comput. Sci., vol.
4, no. 3, pp. 1–8, 2019, doi: 10.9734/ajrcos/2019/v4i330115.

[11] Z. Y. Adam, “A Design and Implementation of A Car Racing
Game,” 2024.

[12] S. R. Sagili and T. B. Kinsman, “Drive Dash: Vehicle Crash

Insights Reporting System,” in 2024 International Conference on
Intelligent Systems and Advanced Applications (ICISAA), 2024,
pp. 1–6. doi: 10.1109/ICISAA62385.2024.10828724.

[13] S. Tognetti, M. Garbarino, A. T. Bonanno, M. Matteucci, and A.

Bonarini, “Enjoyment Recognition from Physiological Data in a

Car Racing Game,” Affin. - Proc. 3rd ACM Work. Affect. Interact.
Nat. Environ. Co-located with ACM Multimed. 2010, pp. 3–8,
2010, doi: 10.1145/1877826.1877830.

