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Abstract—Fault diagnosis in the Industrial Internet of 

Things (IoT), or Eliot, has drawn a lot of interest because of its 

potential to enhance predictive maintenance and operational 

efficiency. Traditional maintenance approaches often lead to 

high downtime and operational costs, necessitating AI-driven 

sensor data analytics for real-time fault detection. This study 

examines AI methods, including deep learning (DL), machine 

learning (ML), and signal processing for fault diagnosis in 

Eliot environments. Various sensors, including vibration, 

temperature, and acoustic sensors, are vital components of 

data acquisition. Advanced data analytics techniques, 

including feature extraction, anomaly detection, and predictive 

modeling, are examined for fault classification and prognosis. 

The integration of Real-time data processing is made possible 

by cloud and edge computing, which lowers bandwidth and 

increases the precision of defect detection. Furthermore, 

cybersecurity challenges in Eliot-based fault diagnosis systems 

are discussed, emphasizing the need for secure and resilient 

architectures. The study highlights various AI-driven fault 

diagnosis frameworks, their efficiency in minimizing failures, 

and their impact on industrial productivity. Comparative 

analysis of different AI models demonstrates their effectiveness 

in predictive maintenance applications. Future advancements 

in AI, sensor technology, and cloud-edge integration will 

further revolutionize fault diagnosis in Eliot, ensuring 

reliability, safety, and cost-effectiveness in industrial 

operations.  
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I. INTRODUCTION 

Fault diagnosis is a critical characteristic of certifying the 
smooth operation and reliability of manufacturing systems, 
particularly in the Clean-in-Place (CIP) process and other 
automated industrial workflows. Unlike simple fault 
detection, which only detects the existence of a defect and 
diagnoses it, involves determining the root cause, severity, 
and potential impact of the issue. By leveraging AI-driven 
sensor data analytics, manufacturers can diagnose faults in 
real time, facilitating preventative monitoring and lowering 
the possibility of equipment failure [1][2]. This approach 
enhances process stability, resource optimization, and 
sustainable manufacturing by minimizing downtime, waste, 
and product contamination. 

The appearance of Industry 4.0 and the Manufacturing 
IIoT has revolutionized fault diagnosis by integrating 
intelligent sensors, real-time monitoring, and AI-powered 

predictive analytics. However, Eliot devices face several 
challenges, including cybersecurity vulnerabilities, network 
latency, and data integrity issues [3]. Cyberattacks on IoT 
networks can compromise sensor data, leading to inaccurate 
fault diagnosis and unexpected system failures. Additionally, 
traditional methods such as wide-bandwidth sensors, Wi-Fi-
based monitoring, and manual inspections suffer from 
limited coverage, accuracy, and scalability, making them less 
effective for modern industrial applications. 

AI-driven predictive maintenance has transformed 
industrial fault management by utilizing real-time data and 
ML techniques and sensor analytics to anticipate equipment 
failures before they occur [4][5]. Traditional reactive 
maintenance, where repairs occur only after a failure, leads 
to unplanned downtime, increased costs, and safety risks [6]. 
In contrast, predictive maintenance (Pd.M.) relies on real-
time condition monitoring, utilizing radar information (e.g., 
temperature, tremor, pressure, and acoustic signals) to 
predict potential faults and schedule maintenance 
accordingly. These sensors, integrated into the Eliot 
ecosystem, enable intelligent decision-making and early fault 
diagnosis, preventing catastrophic system failures. 

The fusion of AI and Eliot sensors enhances maintenance 
efficiency, improves operational reliability, and optimizes 
resource allocation [6]. AI-driven fault diagnosis in industrial 
IoT offers multiple benefits: 

 Reducing unscheduled downtime by anticipating 
malfunctions before they happen. 

 Extends equipment lifespan through proactive 
maintenance strategies. 

 Enhances safety by identifying faults before they lead 
to hazardous conditions. 

 Improves decision-making by providing deep insights 
into system performance and potential failures. 

By utilizing AI-driven sensor data analytics, industries 
can automate fault diagnosis, optimize predictive 
maintenance, and enhance operational efficiency in sectors 
such as manufacturing, energy, transportation, and utilities 
[7][8]. This paper explores the AI techniques, data analytics 
approaches, and real-world applications that drive fault 
diagnosis in industrial IoT, tackling the potential and 
difficulties in this developing sector. 

A. Structure of the Paper 

This research is structured as follows: Section II explains 
fault diagnosis in Industrial IoT. Section III focuses on 
sensor data analytics. Section IV explores AI-based 
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techniques. Section V presents predictive maintenance 
approaches. Section VI reviews relevant literature, and 
Section VII concludes with future research directions. 

II. FUNDAMENTALS OF FAULT DIAGNOSIS IN INDUSTRIAL 

IOT 

The process of identifying the physical characteristics of 
fault components in the systems (kind, place of residence, 
degree of severity, and time) [9]. The two primary techniques 
for diagnosing faults are classification techniques and 
induction methods [10]. A decision tree and many if-
statement binaries serve as the foundation for inference 
techniques such as fault trees. These techniques take a lot of 
effort and may heavily rely on subject knowledge. 
Classification techniques are much quicker and use data that 
includes errors and associated symptoms to train the model. 
For the diagnostic process, several earlier studies favored 
more interpretable techniques, such as Bayesian networks, 
over incomprehensible black-box models. 

There is the description of some key concepts of fault 
diagnosis, which are mentioned below: 

A. Faut Diagnosis System  

The diagnosis of faults is the phrase used to describe a 
system that brings together the capacities of fault detection, 
separation, proof of identity, or classification. One negative 
characteristic shared by all real-world systems is their 
vulnerability to errors and malfunctioning at some point 
during operation, which causes them to display sudden 
behavioral patterns [11][12]. This logically supports the need 
for dependable, ongoing tracking mechanisms that use 
efficient fault-management and fault-diagnosis techniques. 
This highlights the significance of fault identification in the 
functioning of successful and efficient control systems. The 
many phases of fault diagnosis are shown in Figure 1. 

 

Fig. 1. Fault Diagnosis Procedure 

B. Fault Classification 

Faults may be categorized according to their specific 
behavior as well as where they occur (inside the plant). 
Actuator faults, component/process faults, and sensor 
failures are the three types based on placement. On the other 
hand, Abrupt fault, Incipient fault and Intermittent fault are 
the behavior-based classifications. 

C. Fault Isolation 

Once you have completed a defect identified in the 
system, fault isolation is implemented to identify the kind 
and location of the issue. When there are several problem 
modes, fault isolation refers to the technique of determining 
which fault mode is driving the process. 

III. SENSOR DATA ANALYTICS FOR FAULT DETECTION 

Sensor data analytics enables real-time fault detection in 
Industrial IoT (IIoT) using vibration, pressure, acoustic, and 
ultrasonic sensors. Pressure sensors keep an eye on the 
integrity of fluid systems, sensors that detect vibration 

indicate mechanical problems, and sound sensors spot 
irregularities [13]. AI-driven analytics processes sensor data 
to anticipate malfunctions, guarantee preventative 
maintenance, and reduce availability in industrial processes. 

A. Vibration Sensors 

The detection of vibration is the most effective 
instrument among the several predictive maintenance 
techniques. A vibration is a force-induced disturbance 
concerning a reference point. It may be sporadic or 
unpredictable [14]. The normal operations of machines 
create oscillatory movement. The group includes non-
dangerous rhythmic movements (such as broadband 
turbulent conditions, gear correspond frequency ranges, and 
blade passage harmonics from fluid-handling equipment). 
Every machine exhibits different vibration amplitudes, and 
these levels depend on the current equipment loading. 
Machines operate within certain amplitudes during their 
regular use. These measured vibrations need attention when 
the observed values exceed normal ranges because they can 
escalate wear and result in premature machine breakdowns. 
A mechanical fault produces unique vibration signatures, 
which stem from a machine's shape and how it functions [6]. 
Vibration analysis, or VA, is thus crucial for tracking the 
health of machines, spotting malfunctioning components, 
and anticipating future problems. 

B. Pressure Sensor 

Vibration analysis, or VA, is thus crucial for tracking the 
health of machines, spotting malfunctioning components, 
and anticipating future problems [15][16][17]. As a result, 
pressure sensors are widely used in sectors including the 
aerospace industry, medical, and manufacturing.  Accurate 
keeping track of the state of the technology and anticipating 
any issues are made possible by precise pressure readings.  
Additionally, pressure sensors have been needed to meet 
increasingly stringent technological standards as smart 
instruments have continued to progress over the last several 
decades. These include reduced chip/package sizes, 
improved adaptation to different environments, sharper 
resolution, and increased accuracy. 

C. Acoustic and Ultrasonic Sensor 

An apparatus that transforms an acoustics sensor that is 
being tested is a device that converts waves of sound into 
electrical signals [18]. Acoustic sensor technology represents 
fundamental scientific and technological concerns regarding 
their design and development process. Acoustic sensors find 
widespread application across industrial zones as well as 
medical fields and multiple other sectors such as ecological 
and health surveillance, as well as equipment for signal 
processing and chemical and biological analysis. Ultrasonic 
acoustic levitation uses powerful high-frequency 
soundwaves to form standing waves that create balancing 
electrical sounds to lift things at the points where waves 
meet. The complete system consists of Arduino Uno as its 
software component, together with H-Bridge and Battery 
units and an ultrasonic sensor. A graphical depiction showing 
the layout of ultrasonic acoustic levitation appears in Figure 
2. 
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Fig. 2. Block Diagram of Ultrasonic Acoustic Levitation. 

Using an Arduino Uno, ultrasound acoustical levitation 
entails building a system where a sensor that emits 
ultrasound generates high-frequency sound waves that are 
influenced by waves that remain stationary [19][20]. The 
system is controlled by an Arduino Uno and has a power 
source to deliver the necessary electricity and a bridge with 
an H-bridge to drive the ultrasonic sensor. Figure 2 displays 
the block diagram. With the Arduino Uno serving as the 
primary controlling unit, this setup enables managing the 
generation of standing waves (containing both node and anti-
node) for supersonic acoustic lift. 

IV. AI-DRIVEN TECHNIQUES FOR FAULT DIAGNOSIS 

AI-driven fault diagnosis in Industrial IoT leverages ML, 
DL, and hybrid models for real-time, accurate fault detection. 
Techniques like SVM, CNNs, and LSTMs analyses sensor 
data, while XAI methods improve interpretability. These 
approaches enhance predictive maintenance, reducing 
downtime and optimizing operations. 

A. Machine Learning Methods for Fault Detection 

ML methods like RF, SVM, and KNN enhance fault 
detection by analyzing sensor data, predicting failures, and 
improving predictive maintenance efficiency through 
classification, pattern recognition, and anomaly detection.  

1) Random Forest (RF) 
A successful collective ML technique, the radio 

frequency RF classifier (Figure 3), was created by dividing 
nodes and adding more layers of decision trees using a 
random distribution of training data and subsets of features 
[21]. It has shown to be a very reliable and effective 
technique that can handle feature selection even when there 
are more characteristics. Furthermore, it demonstrated 
exceptional proficiency in handling rescaling, big data 
minimal preparation, and missing data. 

 

Fig. 3. The Structure Of Random Forest (RF). 

2) Support Vector Machine (SVM) 

SVM is an algorithm of ML to analyze data for 
classification and linear regression. SVM is a controlled 
learning method which observe data and sort them into one 
of two categories [22]. It produces data map sorted out with a 
safety margin. SVM used when want to categorize text, 
picture classification, handwriting recognition and other 
science applications.  

3) K-Nearest Neighbors (KNN) 
In ML and pattern recognition, the KNN are a popular 

and adaptable technique. It falls under the genre of instance-
based learning techniques, in which a new data point's 
categorization is established by how close it is to the training 
examples in the space of feature spaces [23]. Because the 
KNN technique uses pre-existing training data, it may 
provide recommendations without the need for deliberate 
model training. To categorize training, Examples are used 
[24]. Reports indicate that KNN works well when training 
data varies or when the basic pattern of data distribution is 
not apparent. "K" is used by the KNN algorithm to forecast 
how many nearest neighbors there will be. 

B. Deep Learning Approaches for Fault Diagnosis 

Inherently nonlinear and constantly changing patterns 
and hierarchical structures may be found using DNN, which 
often outperforms more conventional ML approaches like 
multiplex methods of statistical analysis. 

Researchers developed different modern neural network 
structures for detecting nonlinear dynamic system faults, 
including multilayer neural networks alongside AEs and 
RNNs supported by LSTM and gated recurrent units. The 
accuracy level for capturing process nonlinearity has been 
significantly improved by CNNs. GANs have become a data 
generation tool to produce realistic synthetic information that 
assists training processes. 

1) CNN (Convolutional Neural Network)  
A CNN is a kind of deep learning model used to analyze 

information that is structured, with the value pictures or 
sensor patterns, making it ideal for fault detection [25]. As 
shown in Figure 4, the CNN processes input data through 
convolution layers, which extract essential features, and 
pooling layers, which reduce dimensionality while 
preserving key information. This DF extraction enables the 
network to learn complex fault patterns. CNNs offer 
automatic feature extraction, high accuracy, and scalability, 
making them highly effective for industrial fault diagnosis 
and predictive maintenance 

 

Fig. 4. End-To-End DL Based Approach For Fault Detection (A CNN 

Architecture) 

2) Recurrent Neural Networks (RNNs) and LSTMs for 

Time-Series Sensor Data 
RNNs are DL models that are primarily built to work 

with sequential data. RNNs are designed to handle sequential 
data by keeping track of previous entries in an unobserved 
context [26]. The following three sections make up the 
fundamental architectural design input, hidden, and output. 
As shown in Figure 5, recurrent interactions, as opposed to 
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feedback neural networks, enable knowledge to cycle 
throughout the networks. 

 

Fig. 5. Basic RNN Architecture. 

The problem of decreasing gradients, which renders 
vanilla RNNs inappropriate for acquiring dependencies that 
last forever, has been particularly addressed by LSTM [27]. 
Because LSTMs can analyze consecutive input and 
remember knowledge from earlier stages in the sequence, 
they can efficiently anticipate future steps.  To demonstrate 
sequential processing using disregard, input, and results gates 
for time-series anticipating, the graphic depicts a network 
formed by LSTM (Figure 6). 

 

Fig. 6.  LSTM Architecture  

V. PREDICTIVE MAINTENANCE USING AI AND SENSOR 

DATA 

Predictive maintenance leverages AI-driven analytics and 
sensor data to prevent breakdowns of machinery before they 
happen to save costs for upkeep and disruption. In contrast to 
conventional preventative or reactive repair, AI-powered 
predictive maintenance uses ML and DL models to analyze 
real-time sensor data and detect anomalies, degradation 
patterns, and failure trends. 

A. Role of AI in Predictive Maintenance 

AI enhances predictive maintenance by identifying 
complex relationships within sensor data, improving fault 
detection accuracy, and automating decision-making 
processes [28]. ML procedures such as RF, SVM, and Neural 
Networks forecast component failures by analyzing data 
collected from sensors in real time and the past. DL models, 
including LSTM networks and CNN, process time-series 
data for accurate failure predictions. 

B. Predictive maintenance Sensor Data 

In predictive conservation, Industrial IoT (IIoT) 
integrates advanced sensor technologies to monitor 
equipment health and anticipate failures [29]. Vibration 
sensors analyze mechanical oscillations, detecting imbalance, 
misalignment, and early-stage wear by measuring frequency 
and amplitude variations. Pressure sensors ensure system 
integrity by continuously tracking fluid pressure deviations, 
which can indicate leaks, blockages, or component 
degradation. Acoustic and ultrasonic sensors utilize high-
frequency sound waves to detect structural anomalies, leaks, 

and cavitation, aiding in non-invasive diagnostics. 
Temperature sensors monitor thermal fluctuations, 
identifying overheating, thermal stress, and inefficiencies in 
mechanical and electronic systems. By leveraging real-time 
sensor data, AI-driven models can perform anomaly 
detection, fault classification, and predictive modelling, 
improving commercial settings' operational effectiveness and 
decreasing unavailability.  

VI. LITERATURE REVIEW 

This literature review highlights advanced fault detection 
techniques using AI, IoT, MEMD, and multi-sensor fusion in 
industrial and healthcare systems, emphasizing predictive 
maintenance, real-time diagnostics, and adaptive 
methodologies for reliable and efficient smart system 
operations. 

Arifin, Wang, and Uddin (2024) examines IM BRB fault 
detection because this fault configuration generates 
additional heating alongside vibration and acoustic noise and 
sparking in electrical motors. This paper introduces MEMD 
as a modified version of EMD to detect BRB faults by 
employing current signatures from motors. Executables of 
their developed smart wireless data acquisition system serve 
as a research platform for current signal collection. Several 
processing measures constitute the MEMD design. EMD 
analysis with correlation-based signal selection is performed 
first to determine the most suitable intrinsic mode function 
(IMF). The proposed method recommends an adaptive 
window function for accurate fault identification and 
spectrum analysis under various BRB circumstances. A 
novel analytical technique for creating the fault index is used 
to diagnose problem severity through proposed reference 
functions. An experimental validation confirms the 
effectiveness of the implemented MEMD technique [30]. 

Ünlü and Söylemez (2024) investigate the complexities 
of AI-driven maintenance predictions by looking at its 
fundamental ideas, methods, and the usefulness of 
information analytics and ML in anticipating equipment 
faults, then go on to show the usefulness and practical 
implementation of these AI approaches in a real-world 
manufacturing setting via a thorough case study using an 
open-source dataset.  In addition to illustrating the procedure 
for gathering and analyzing data, this case study highlights 
the tangible advantages and difficulties of putting AI-driven 
predictive maintenance techniques into practice [31]. 

Gawde et al. (2024) the greatest accuracy of 100%, this 
research shows an impressive multi-fault detection accuracy 
and multiple fault type categorization.  Additionally, multi-
sensor data fusion works noticeably better than single-sensor 
methods, showing an improvement in all models' fault 
prediction accuracy.  Explainable AI techniques are a crucial 
development in Industry 4.0's Intelligent Manufacturing and 
Predictive Maintenance as they help make defect diagnostics 
more interpretable. The work is innovative in that it uses 
multi-sensor data fusion to classify rotating machines with 
many faults, utilizing Explainable AI LIME and RF [32].  

Chen et al. (2024) discusses IoT fault detection and 
notification with the advantage of the Internet of Things 
(IoT). The Edge AI has been used in this design to simplify 
the operation and automatically extract the features from the 
collected signals from the machinery for fault diagnosis, so 
the industries can carry out the fault detection even if the 
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experts lack. With the help of it, the operational conditions of 
machinery are under control, and the staff can fix or maintain 
the machines according to the classification of fault 
diagnosis [33].  

Al-Zuriqat et al. (2023) describes an adaptive FD 
methodology to detect faults in multiple sensors occurring 
simultaneously within SHM systems. FD approaches with 
adaptivity combine three features: detection, isolation, and 
accommodation for SHM applications through the 
implementation of analytical redundancy from sensor data 
correlation. ANN with predictive abilities check for faults 
through their analysis of sensor data correlations. The time 
instances for sensor faults are identified, after which 
individual sensor data moving averages reveal the location of 
faults. The ANN models require adaptation when being used 
for fault accommodation through sensor removal along with 
pre-fault data processing to generate virtual data in place of 
faulty sensor information. The developed adaptive FD 
method receives validation through testing using sensor data 
obtained from railway bridge SHM systems. Experimental 
results validate the proposed system's ability to guarantee the 

precise and reliable operation of real-life SHM systems 
irrespective of multiple sensor failures that happen during 
operation [34]. 

Sreenivasu et al. (2024) investigate how the IoT and AI 
are changing the face of illness detection in connected 
healthcare systems. AI has quickly become an indispensable 
tool in the healthcare industry, providing advanced 
algorithms for evaluating medical data and facilitating 
forecasting and decision-making. The IoT improves upon 
this by allowing web-enabled devices, such as implanted 
sensors and wearables, to gather data continuously. By 
integrating AI and IoT, smart healthcare systems improve 
medical procedures, patient experiences, and operations. 
Rapid and reliable disease diagnosis is made possible by 
combining AI-driven procedures with IoT data streams [35]. 

Table I provides a comparison of earlier research on 
defect detection and predictive maintenance in industrial 
machinery, highlighting the datasets used, key findings, 
identified limitations, and potential directions for future 
research. 

TABLE I.  SUMMARY OF ON-FAULT DETECTION AND PREDICTIVE MAINTENANCE IN INDUSTRIAL MACHINERY  

Author Study Approach Key Contributions Challenges Limitations 

Arifin et al. 

(2024) 

BRB fault detection 

in motors 

MEMD with current 

signals 

Accurate fault severity 

diagnosis 

Real-time 

processing 

Limited generalization 

across motor types 

Ünlü and 

Söylemez 

(2024) 

AI in predictive 

maintenance 

ML with open-source 

data 

Practical AI deployment in 

industry 

Data integration Limited industry scope 

Gawde et al. 
(2024) 

Multi-fault 
classification 

Multi-sensor + 
Explainable AI 

100% accuracy; model 
interpretability 

Sensor fusion issues May not scale in 
uncontrolled environments 

Chen et al. 

(2024) 

IoT fault detection in 

industry 

Edge AI for feature 

extraction 

Real-time, expert-free 

diagnostics 

Device constraints Needs retraining for new 

machines 

Al-Zuriqat et 
al. (2023) 

Fault detection in 
SHM systems 

Adaptive ANN with 
redundancy 

Handles multiple 
simultaneous sensor faults 

Real-time 
adaptation 

Sensor drift affects 
accuracy 

Sreenivasu et 

al. (2024) 

Illness detection in 

smart healthcare 

AI + IoT data integration Improved diagnostics and 

patient outcomes 

Data privacy, 

device 
heterogeneity 

Implementation across 

diverse healthcare systems 

VII. CONCLUSION AND FUTURE WORK 

AI-driven sensor data analytics has revolutionized fault 
diagnosis, facilitating continuous tracking in the industrial 
IoT sector, predictive maintenance, and proactive fault 
management. By leveraging ML algorithms, industries can 
minimize unplanned downtime, optimize resource 
utilization, and improve the dependability of operations. The 
integration of IIoT sensors with AI-powered analytics has 
improved fault detection accuracy, extended equipment 
lifespan, and increased overall efficiency. However, 
challenges such as cybersecurity risks, data integrity issues, 
and network latency still need to be addressed to ensure the 
robustness of predictive maintenance systems.  

Future work should concentrate on creating AI models 
that are more adaptable and safer to use in a variety of 
industrial settings. Technological developments in 
computing on the edge, blockchain, and federated instruction 
may improve real-time decision-making, lessen reliance on 
centralized cloud servers, and increase data security. 
Additionally, incorporating XAI methods will enhance 
transparency and trust in fault diagnosis systems. Expanding 
research into multi-sensor data fusion, self-healing industrial 
systems, and hybrid AI models will enhance the precision 
and effectiveness of defect-finding throughout complicated 
industrial processes.  By tackling these issues and exploring 
innovative solutions, AI-driven fault diagnosis can continue 

to evolve, ensuring the sustainability and resilience of 
modern industrial systems. 
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