
Journal of Global Research in Electronics and Communication

Volume 1, No. 4, April 2025
Available Online at: https://jgrec.info/index.php/jgrec/index
ISSN: 2321-3175

© JGREC 2025, All Rights Reserved 1

R E S E A R C H P A P E R

Advances in Software Development Life Cycle

Models: Trends and Innovations for Modern

Applications

Vikas Prajapati

Independent l Researcher

Prajapati.vikas2707@gmail.com

Abstract—A crucial framework for Effectiveness, quality,

and timely delivery is ensured by the Software Development Life

Cycle (SDLC), which is the methodical design of software

programs. This study explores the evolution of SDLC models,

focusing on traditional, Agile, and hybrid models, as well as

developments like DevOps, cloud computing, continuous

integration/continuous deployment (CI/CD), and microservices

architecture that have completely changed the development

process. The study emphasizes the necessity of flexibility,

teamwork, and automation while highlighting the major

developments and trends influencing the state of software

development today. Conventional SDLC models, including the

V-Model, Spiral Model, and Waterfall Model, have been widely

utilized for structured and predictable software development.

However, with the rise of dynamic market demands and fast-

paced technological advancements, these traditional models

have often fallen short of providing the flexibility and

adaptability required for modern software projects. Agile

methodologies emerged, promoting iterative development,

stakeholder collaboration, and continuous delivery, making it

highly suitable for contemporary software needs.

Keywords—Software Development Life Cycle (SDLC), Agile

Method, Waterfall Model, CI/CD, Hybrid Agile

I. INTRODUCTION

The SDLC comprises a comprehensive strategy for the
creation, modification, upkeep, and replacement of software
systems. An overview of the software development approach
is provided by the SDLC Model, which serves as a foundation
for the overall process. The Waterfall model, V-shaped model,
evolutionary prototyping model, spiral model, iterative and
incremental model, and agile model are among the several
types of models. To guarantee the project's success, it could
be necessary to select the appropriate SDLC model based on
the particular issues and specifications. There are benefits and
drawbacks to each model[1]. It depends on how their
initiatives are going, and they must use the model in
accordance with the requirements. The life cycle of software
development The SDLC is a methodical technique to finish
the software development process on schedule while
maintaining software quality [2]. Often referred to as the
software development life cycle, the list of duties that must be
fulfilled during the system development process is described
in the system development life cycle.

In the field of information technology (IT), the systems
development life cycle, in its various variations, continues to
be one of the most traditional and often utilized approaches to
software development and acquisition. It has changed

throughout time in response to ever-evolving situations and
paradigm shifts in the development or acquisition of software,
but its core principles remain relevant today[3]. Although life-
cycle phases have existed under many names and with varying
numbers of steps, The SDLC is essentially sound in its
established application in business, industry, and government.
It has been said that, together with prototyping, the SDLC is
one of the two most used approaches for developing systems
nowadays. Therefore, it is still crucial for students now and
tomorrow to understand the SDLC.

Software packages are produced by several organizations
to furnish offices with amenities. Some issues arise in the
initial phases of software development. In order to prevent
these issues or challenges, software engineering and software
programs are developed in an organized manner. The SDLC
is a method that allows for minute-by-minute software
development, increases the likelihood that the project will be
completed on time, and guarantees that the end product
complies with requirements [4]. The SDLC framework gives
system designers and developers a set of steps to follow while
creating software.

A project's alignment with stakeholder expectations and
organizational goals is ensured by the choice of the SDLC
model. These studies demonstrate how varied software
projects are and how flexible and adaptive SDLC selection
methods are necessary to meet changing project needs. The
variety of software projects [5], each with its own set of needs,
limitations, and stakeholder expectations, makes the choice of
an SDLC model essential.

A software project consists of papers that explain how to
use and operate the program, data structures that allow the
application to effectively manipulate information, and
instructions (computer programs) that, when run[6], give the
necessary features, function, and performance. When
beginning a new software project, software engineers must
overcome a number of obstacles, such as creating methods for
creating software projects that can readily handle diverse
platforms and execution settings.

II. OVERVIEW OF SOFTWARE DEVELOPMENT LIFE CYCLE

MODELS

In the current dynamic and competitive software
development environment, the SDLC model selection is a
crucial component in determining project success [5].
Development methods, resource allocation, and project
timelines are just a few of the aspects that are impacted by the
organized frameworks that SDLC models provide. It might be

Vikas Prajapati et al., Journal of Global Research in Electronics and Communication, 1 (4) April 2025, 01-06

© JGREC 2025, All Rights Reserved 2

difficult to select the best SDLC model for a given software
project, though, because there are so many of them, ranging
from traditional waterfall to modern agile approaches. There
are several models for software development, and numerous
organizations design and employ their own models. The
model selection has a significant influence on testing. The
independent phases are management, testing, and validation,
and they are used at all levels. Every model has pros and cons,
and the organization's demands must guide the choice. An
outline of a software development process often has many
steps that define the creation, replacement, maintenance,
modification, and improvement of new software [7]. The
software's quality and the new project's entire development
phases are the main emphasis of the life cycle approach. The
SDLC's objective is to create a high-quality program that
satisfies clients' objectives and expectations and is completed
within a specific time frame at a reasonable cost[8].

A. Traditional Software Development Life Cycle Models

A "software developer" is someone whose job it is to
create and maintain computer programs, and this role has been
there since the early days of electronic information processing
(ENIAC) and vacuum tubes. In the many years since the first
computer was invented, a lot has happened in the software
development process. These methods have changed to take
into consideration the latest advancements in development
environments, computer power, and ideas on the
organizational management of software development teams.
In response to this growth, both public and commercial
software development initiatives throughout the globe have
produced innovative approaches to software development.
Though they differ greatly in methodology, these approaches
all aim to create software in the most cost-effective, efficient,
and effective way possible.

1) Waterfall Model
The Waterfall model, one of the most traditional methods

for software development life cycles shown in Figure 1,
rigorously follows a sequential sequence. It gradually
descends. It is a part of the procedure for creating software.
Everything must remain in its proper sequence; therefore, they
can't alter it to meet client demands. These issues are a result
of this. - There will be no profit, no use of time, and the
customer will not be satisfied. Their requirements will remain
unfulfilled.

Fig. 1. Waterfall Model

2) V-Shaped Model
An expansion of the waterfall concept is the V-shaped

shape, shown in Figure 2. The V-shaped model shows the
relationships between the various stages of development and
how they relate to testing. You may hear it called the
"verification and validation model" as well. The most crucial
aspect of every product is testing the software's functionality.

A lot of testing is required [2]. The testing phase is thus the
primary emphasis of the V-shaped model.

Fig. 2. V-Shaped Model

3) Iterative Model
One approach to the SDLC is the iterative model shown in

Figure 3, which uses tiny units to apply software development
requirements repeatedly until a final solution is reached. To
accommodate software development process needs, the
iterative or incremental approach is broken down into many
architectural pieces. The four primary components of each
architectural unit are design, development, testing, and
implementation. According to the specifications of the
suggested model, development proceeds iteratively until a
final, publishable version is achieved.

Fig. 3. Iterative Model

4) Spiral Model
The Spiral (waterfall) development model, which is based

on risk analysis, is shown in Figure 4, and the iterative
development models are combined in the four-stage spiral
model [9]. In essence, the model iteratively improves the
product by going around the coil.

Fig. 4. Spiral Model

B. Agile Software Development Model

In agile development shows in Figure 5, this approach is
useful for solving problems with data organization and
structure, relational database architecture, and user interface
by making use of process models to depict systems
graphically. In order to accomplish iterative software
enhancement, user feedback is utilized to converge on

https://www.researchgate.net/publication/346819120_Software_Development_Life_Cycle_Models-A_Comparative_Study
https://www.researchgate.net/publication/346819120_Software_Development_Life_Cycle_Models-A_Comparative_Study

Vikas Prajapati et al., Journal of Global Research in Electronics and Communication, 1 (4) April 2025, 01-06

© JGREC 2025, All Rights Reserved 3

solutions[10]. Agile development differs from traditional
SDLC in that it breaks decomposing the SDLC into more
manageable portions, referred known as "increments" or
"iterations," that incorporate all of the conventional stages.
Today, six approaches are recognized as agile development
methods[11]. Software development methodologies such as
crystal, feature-driven, lean, scrum, and extreme
programming fall within this category.

Fig. 5. Agile Model

C. System Development Life Cycle Model Classifications

There are three well-known ways to build systems:
techniques that are structured, O-O analysis, and agile.

1) Structured Analysis
In the same way that a building's blueprint serves as an

overarching plan for the building's construction, structured
systems analysis is a tried-and-true, straightforward approach
to systems development. This approach is useful for solving
problems with data organization and structure, relational
database architecture, and user interface by making use of
process models to depict systems graphically.

2) Object-oriented Analysis
In terms of the nuts and bolts, object-oriented methods for

building IT systems can make use of any of the tried-and-true
techniques, such as waterfall, parallel, V-model, iterative,
throwaway, and system prototyping. The RAD methodology
for iterative development is commonly linked with object-
oriented methods. Decomposition is the key differentiator
between object-oriented methods and more conventional
approaches like structured design. Conventional methods for
solving decomposition problems focus on either processes or
data.

3) Agile Methods
This is the most recent method that aims to build a system

incrementally by simplifying, integrating the SDLC, and
eliminating the need to spend time and energy on
requirements creation and specification. Based on user input,
agile methodologies typically utilize depicting a series of
revisions or iterations through a spiral model[12]. A number
of prototypes eventually give way to the final product as a
consequence of the iterative process. Efficient administration
of people, tasks, timelines, and budgets is essential in any
development plan that makes use of project management tools
and methodologies.

III. EMERGING TRENDS IN SOFTWARE DEVELOPMENT LIFE

CYCLE MODELS

The software development business is complicated and
always evolving. Therefore, it's vital to have a deep
understanding of all the approaches utilized in this field. To

effectively handle uncertainty, one must have a thorough
understanding of the many methods that are used. This is why
it is standard practice to conduct thorough surveys and
research studies to evaluate the current techniques'
effectiveness and identify areas for improvement [13]. The
software development team's credentials, the suggested
solutions, the extent to which stakeholders are involved, and
the possible financial effect are only a few of the many aspects
considered in the quest for precise analysis [14]. Improving
this relentless quest for advancement and improvement is
crucial to the effectiveness and efficiency of software
development processes.

A. Agile Software Development Method

A lightweight method of software development, the agile
approach is frequently referred to as the "moving quickly"
approach. Iterative or incremental software development is the
foundation of this methodology, with each component
standing in for a different phase of the project's evolution [9].
Agile methodology eschews conventional approaches like
requirements analysis, planning, and tools in favor of client
participation and engagement throughout the product
development process. Many models make up this strategy, and
we'll go over each one in depth.

Principles of Agile-

• Prioritize the timely and reliable delivery of high-
quality software to ensure client satisfaction.

• Accept evolving needs, especially towards the end of
development. the flexibility and adaptability offered
by agile methods provide its customers a leg up in the
market.

• Regularly release functioning software, ideally every
two weeks to every two months, while a shorter
timeframe is preferred[15].

• Developers and businesspeople must maintain
constant communication and collaboration throughout
the process.

• Build projects on persons who are highly driven.
Encourage them, provide them with resources, and
have faith in their abilities; they will succeed.

• The most efficient method of communication in a
development team is face-to-face interaction.

• The most crucial measure of advancement is the
presence of working software.

• Agile techniques help achieve sustainable growth.
There ought to be no end to the number of users,
sponsors, and developers who can keep up a steady
pace.

Popular Frameworks of Agile Method-

1) Scrum
Scrum is yet another well-liked agile development

technique that boosts productivity. Its foundation is essentially
the incremental software development approach. The scrum
technique refers to each iteration as a sprint, which divides the
whole development cycle into a sequence of iterations. A
sprint can last no more than thirty days[16]. The process
begins with gathering user needs, albeit it is not anticipated
that the user will provide all of them at the outset [17]. The
needs must then be prioritized; this list is called the product
backlog.

2) Extreme Programming (XP)

Vikas Prajapati et al., Journal of Global Research in Electronics and Communication, 1 (4) April 2025, 01-06

© JGREC 2025, All Rights Reserved 4

The concept of extreme programming was first developed
by Kent Beck in 1996. Additionally, Ron Jeffries explains the
process as the principles of Extreme Programming, a software
development discipline, are boldness, communication,
simplicity, and feedback. They provide people in customer,
management, and programming positions with important
rights and obligations. Unlike conventional techniques, XP is
built on minor releases that are created on a periodic basis. It
also prioritizes customer satisfaction alongside ongoing input.
Therefore, it is important to embrace changes in
specifications.

3) Crystal
Created by Alistair Cockburn in the early 1990s, the

Crystal family of human-oriented, lightweight techniques
aims to improve agility and efficiency. Crystal, according to
Highsmith, prioritizes collaboration and teamwork by making
use of project size, criticality, and objectives in order to
establish appropriately configured practices for all members
of the process family [18]. The following is a summary of
Crystal's design principles: By using deeper lines of
communication between individuals, the team can minimize
intermediate work items as it creates running code more
regularly [19].

B. DevOps Integration

DevOps came to be as a solution to the drawbacks of the
present software development methodology and the gap
between operations and development teams. The Waterfall
model created silos between teams which delayed feedback,
minimized collaboration, and resulted in misaligned
objectives. Patrick Debois invented the term "DevOps" back
in 2009 to understand the merging of development and
operational processes in the hope of improving collaboration
between those, reducing the time it took to bring software to
the market, and enhancing the potential software's quality over
time[20]. DevOps has been growing across multiple domains
since it started. After a while, DevOps started to embrace
practices like IaC, automated testing, and CI/CD, all address
specific SDLC issues.

1) Continuous Integration (CI)
In software development, a technique known as

continuous integration combines and builds code from each
developer on a regular basis to identify defects as soon as
feasible [21]. A CI system typically has the following steps,
which are initiated by push or commit instructions.

• Integrated- At this point, every developer
incorporates the scripts or output from their work.

• Compiled Code- is assembled into executables or
packages.

• Tested- Test executables either automatically or
manually.

• Archived- Archive logs, test results, and executable
files while the procedure is underway.

2) Continuous Deployment (CD)
Software released using the CD methodology uses

automated testing to verify that code base modifications are
accurate and reliable enough for instantaneous autonomous
deployment to a production environment [22]. Because of the
terminology, it might be difficult to distinguish between
continuous deployment and continuous delivery. Both have
fairly identical tasks and are shortened to CD [23]. The first

step in deployment is delivery. Prior to the production release
in delivery, a last manual approval step is required.

3) Role of DevOps in SDLC
A major component of software development is DevOps.

In software development, the traditional approach uses
distinct teams for development, testing, and operations [24].
Each team has its own set of responsibilities and objectives as
a result of this strategy's creation of a silo culture [25].
However, DevOps brings these teams together to work
towards a shared objective.

IV. INNOVATIONS IN SOFTWARE DEVELOPMENT LIFE CYCLE

FOR MODERN APPLICATIONS

The SDLC has seen significant advancements, driven by
the need to build more complex, scalable, and adaptable
applications in increasingly dynamic environments.
Innovations in technology, tools, and methodologies have
revolutionized how software is developed, tested, and
deployed. Below are some key innovations in SDLC that are
particularly impactful for modern applications:

A. Micro Services Architecture

The loose connectivity between different services is the
most important factor in microservices design. The technical
needs of the various services may vary, and they may share or
possess their own servers and databases. Therefore, the design
and implementation of microservices may vary depending on
the application's scalability needs [26]. Appropriate
communication and deployment strategies are also essential
components of a dependable microservices architecture.

B. Cloud Computing And Software Development Life Cycle

The public, private, or hybrid cloud models and SLA
distinguish the CSDLC from the typical software
development life cycle[27]. The duties of cloud service
providers and users, as well as business-level policies, are
clearly outlined under SLA. The list of services, including
SaaS[28], PaaS, IaaS, customization, security, accessibility,
and multi-tenancy, is described in depth. The program may be
modified by each user in the CSDLC, and the SLA contains
information on customizations [29]. The CSDLC also requires
data security and protection [30] to address both external and
internal risks. Multiple users on various platforms can access
the same program instance, thanks to multi-tenancy.

C. Artificial Intelligence And Automation

Software engineering jobs have been helped or
mechanized by AI methods, which aim to build computer
programs with an intellect comparable to that of a human
being. There have been a lot of studies that have found bugs
in software documents, such as requirements, designs, test
plans, and source code, by using software inspections [31].
The area of study known as automated software engineering
is always developing new approaches and tactics [32].
Mathematical model-based toolkits (theorem provers and
model checkers), requirements-driven and reverse-
engineering toolkits (design, coding, verification validation),
project and configuration management tools, code generators,
analyzers, and visualizers—all are part of this [33].

D. Continuous Integration/Continuous Deployment

(CI/CD)

As software development has advanced, the conventional
approaches of lengthy development result in major delays,

Vikas Prajapati et al., Journal of Global Research in Electronics and Communication, 1 (4) April 2025, 01-06

© JGREC 2025, All Rights Reserved 5

subpar products, and increased risks for major releases. The
adoption of CI/CD procedures is a result of the demand for
more effective and agile approaches. A culture of shared
responsibility and cooperation is fostered by CI/CD, which
bridges the gap between development and operations teams.
[34]. Using CI/CD, teams are able to automate the build
process, find and fix issues earlier, and test and deploy
procedures to reduce human error and deliver code updates
safely and promptly. This paradigm change increases software
releases' dependability and speed while also improving their
general quality and customer happiness.

V. LITERATURE REVIEW

Yusuf et al. (2023) Through improved team dynamics,
practical advice, and theoretical knowledge, this study
significantly advances the field of software development.
Customer happiness, productivity, and project delays may all
be decreased with the FCC approach. By exchanging
research, specialists in the field may emphasize cooperation
and teamwork, which will help software development
methods continue to advance and improve. The SDLC has
evolved to incorporate several models, such as the Waterfall,
Spiral, V-Model, Iterative, Big Bang, and Agile cycles. The
literature research reveals that the SDLC as a framework has
six main problems and flaws: inadequate analysis, poor
documentation structures, insufficient flexibility, difficulty
choosing the appropriate SDLC, inappropriate design, and
lack of adaptation[35].

Al Alamin & Uddin (2021) A thorough literature
evaluation of a significant number of research publications
devoted to ML model quality assurance is conducted in this
work. They mapped the numerous ML adoption obstacles
throughout the SDLC phases to create a taxonomy of MLSA
quality assurance concerns. Based on the taxonomy, they offer
suggestions and research possibilities to enhance SDLC
procedures. This mapping can assist MLSAs in prioritizing
their quality assurance initiatives when the use of ML models

is deemed essential. Therefore, MLSAS must have quality
assurance (QA). Numerous studies are devoted to identifying
the particular difficulties that may arise when integrating ML
models into software systems.[36].

Jayanthi et al. (2021) The significance of green software
and how experts see it are highlighted in this study. It also
discusses and explains the green software that is now
available, as well as the strategies that organizations are using
to make a more sustainable way to build software. They
compare and contrast these methods. At the end of the study,
the authors propose a system for organizations to follow that
incorporates sustainability into software development at every
level. As the first step in lowering their carbon impact,
businesses must monitor their power management. Software
greening is essential to business power management[37].

Aminu & Ogwueleka (2020) The purpose of this essay is
to evaluate software life cycle models so that readers may
choose the one that is most suitable for their clients.
Accordingly, the developer chooses a model and attempts to
meet the needs of the client. Software life cycle models are
presented in this study along with a performance comparison.
Every day, a new SDLC model is created in the software
business, yet each model has advantages and disadvantages.
Thus, none of them satisfy every need of the client[12].

Reyal et al. (2021) An interview and two polls are included
in this paper: A review of existing literature on automatic UI-
generating tools and a poll of users regarding the need for an
automatic UI-generation system. The first study documents
the current state of software and hardware solutions for
creating user interfaces automatically. In order to close the
gap between human and automated user interface creation, the
second study adheres to the SDLC steps: requirements
gathering, UML diagram generation, wireframe generation,
web UI generation, evaluation of the application of HCI
concepts, and HCI practices[38].

TABLE I. LITERATURE OF REVIEW ON ADVANCES IN SOFTWARE DEVELOPMENT LIFE CYCLE MODELS: TRENDS AND INNOVATIONS FOR MODERN

APPLICATIONS

Reference Study On Approach Key Findings Challenges Limitations

Yusuf et al.,

(2023)

FCC model's

impact on SDLC

Theoretical

understanding and

practical guidance for
improved SDLC

FCC approach boosts

customer happiness,

productivity, and decreases
project delays.

poor analysis, unclear SDLC

choices, poor documentation,

inappropriate design, and a
lack of flexibility

Limited empirical

validation of FCC model in

diverse environments

Al Alamin &

Uddin, (2021)

Quality assurance

in ML-based

SDLC

Literature review and

taxonomy of ML

adoption challenges

Developed taxonomy for

MLSA quality assurance,

prioritization of QA efforts

Ensuring reliability and

accuracy of ML models in

SDLC

Limited empirical studies

on MLSA quality assurance

Jayanthi et al.,

(2021)

Green software in

SDLC

Comparative analysis of

energy-efficient SDLC

methods

Discusses sustainability in

software, the importance of

power management

Adoption of green software

development practices

Lack of universal standards

for sustainable software

development

Aminu &

Ogwueleka,

(2020)

Analysis of SDLC

models in

comparison

Comparison of many

SDLC models'

performances

No single SDLC model can

satisfy every need of the

client

Selecting an appropriate

SDLC model for a project

The constant emergence of

new SDLC models with

varying effectiveness

Reyal et al.,

(2021)

Automatic UI

generation in

SDLC

Literature and user

survey on UI automation

tools

Analyzes gaps between

manual and automated UI

generation

Integrating HCI concepts

with SDLC automation

Limited tools for full

automation of UI generation

VI. CONCLUSION AND FUTURE WORK

The SDLC models have undergone significant
modification to accommodate the ever-changing requirements
of modern software applications. Traditional SDLC models
such as the Waterfall, V-model, and Spiral Model can often
hinder fast expansion, particularly in settings that are
constantly changing, even if they offer an organized approach,
due to their lack of adaptability and flexibility. Agile
approaches arose as a more flexible solution, with an emphasis

on continuous delivery, stakeholder engagement, and iterative
development. However, as these innovations evolve, new
challenges arise, particularly in terms of quality assurance,
security, and managing cross-functional teams in a highly
dynamic environment. The continued advancement in
automation, AI-driven testing, and machine learning within
SDLC processes holds the potential to overcome some of
these hurdles, providing more robust and intelligent solutions
for modern software development. As the landscape of

Vikas Prajapati et al., Journal of Global Research in Electronics and Communication, 1 (4) April 2025, 01-06

© JGREC 2025, All Rights Reserved 6

software development continues to evolve, several areas
warrant further exploration and development.

The future of SDLC models is exciting, with a shift toward
more intelligent, automated, and scalable processes. To keep
up with the rapid changes in technology and user needs, the
industry must continue to innovate and adapt its development
methodologies to meet the challenges of the future.

REFERENCES

[1] H. S. Chandu, “Advanced Methods for Verifying Memory
Controllers in Modern Computing Systems,” pp. 377–388, 2024,
doi: 10.48175/IJARSCT-19862.

[2] G. Gurung, R. Shah, and D. Jaiswal, “Software Development Life
Cycle Models-A Comparative Study,” Int. J. Sci. Res. Comput. Sci.
Eng. Inf. Technol., pp. 30–37, 2020, doi: 10.32628/CSEIT206410.

[3] M. Mcmurtrey, “A case Study of the a Pplication of the S Ystems

D Evelopment L Ife C Ycle (Sdlc) in 21 St C Entury H Ealth C
Are : S Omething O Ld, S Omething N Ew ?,” pp. 1–12, 2022.

[4] B. Acharya and K. Sahu, “Software Development Life Cycle

Models: A Review Paper,” Int. J. Adv. Res. Eng. Technol., vol. 11,
no. 12, pp. 169–176, 2020, doi:
10.34218/IJARET.11.12.2020.019.

[5] D. B. Aniley, “Selection of Software Development Life Cycle
Models using Machine Learning Approach,” vol. 186, no. 42, pp.
36–43, 2024.

[6] A. Singh and P. J. Kaur, “Analysis of software development life

cycle models,” Lect. Notes Electr. Eng., vol. 476, no. 2, pp. 689–
699, 2019, doi: 10.1007/978-981-10-8234-4_55.

[7] A. Gogineni, “NOVEL SCHEDULING ALGORITHMS FOR

EFFICIENT DEPLOYMENT OF MAPREDUCE

APPLICATIONS IN HETEROGENEOUS COMPUTING,” Int.
Res. J. Eng. Technol., vol. 4, no. 11, p. 6, 2017.

[8] A. Goyal, “Optimising Cloud-Based CI / CD Pipelines :
Techniques for Rapid Software Deployment,” TIJER, vol. 11, no.
11, pp. 896–904, 2024.

[9] A. Alazzawi, Q. Yas, and B. Rahmatullah, “A Comprehensive
Review of Software Development Life Cycle methodologies: Pros,

Cons, and Future Directions,” Iraqi J. Comput. Sci. Math., vol. 4,
pp. 173–190, 2023, doi: 10.52866/ijcsm.2023.04.04.014.

[10] G. Modalavalasa, “The Role of DevOps in Streamlining Software

Delivery : Key Practices for Seamless CI / CD,” Int. J. Adv. Res.
Sci. Commun. Technol., vol. 1, no. 2, 2021, doi:
10.48175/IJARSCT-8978C.

[11] Y. Leau, W. K. Loo, W. Y. Tham, and S. F. Tan, “Software

Development Life Cycle AGILE vs Traditional Approaches,” vol.
37, no. Icint, pp. 162–167, 2012.

[12] H. Aminu and F. N. Ogwueleka, “A Comparative Study of System

Development Life Cycle Models,” J. Emerg. Technol. Innov. Res.,
vol. 7, no. 8, pp. 200–212, 2020.

[13] E. Ailen OMIJIE, “Variations and Emerging Trends in Software

Engineering,” Int. J. Sci. Res., vol. 13, no. 3, pp. 1675–1679, 2024,
doi: 10.21275/sr24323044809.

[14] V. Pillai, “Enhancing Transparency and Understanding in AI
Decision-Making Processes,” irejournals, vol. 8, no. 1, p. 5, 2024.

[15] R. Shah, “A Literature Review on Agile Model Methodology in
Software Development,” vol. 3, no. 6, p. 2017, 2017.

[16] J. Thomas, “The Effect and Challenges of the Internet of Things (

IoT) on the Management of Supply Chains,” vol. 8, no. 3, pp. 874–
878, 2021.

[17] S. Sharma, D. Sarkar, and D. Gupta, “Agile Processes and

Methodologies: A Conceptual Study,” Int. J. Comput. Sci. Eng.,
vol. 4, 2012.

[18] B. J. Syed Mohammed Nadeem, Deepak Dasaratha Rao, Arpit

Arora, Yashwant V Dongre, Rakesh Kumar Giri, “Design and
Optimization of Adaptive Network Coding Algorithms for
Wireless Networks,” IEEE, pp. 1–5, 2024.

[19] I. Journal, “AGILE: Software development model 12

www.erpublication.org,” no. 3, pp. 11–17, 2015.

[20] J. Thomas, “Enhancing Supply Chain Resilience Through Cloud-

Based SCM and Advanced Machine Learning: A Case Study of
Logistics,” J. Emerg. Technol. Innov. Res., vol. 8, no. 9, 2021.

[21] M. S. S Shah, “Kubernetes in the Cloud: A Guide to
Observability,” DZone, 2025.

[22] M. H. Rifa’i Istifarulah and R. Tiaharyadini, “DevOps, Continuous

Integration and Continuous Deployment Methods for Software
Deployment Automation,” JISA(Jurnal Inform. dan Sains), vol. 6,
p. 116, 2023, doi: 10.31326/jisa.v6i2.1751.

[23] Abhishek Goyal, “Optimising Software Lifecycle Management
through Predictive Maintenance: Insights and Best Practices,” Int.

J. Sci. Res. Arch., vol. 7, no. 2, pp. 693–702, Dec. 2022, doi:
10.30574/ijsra.2022.7.2.0348.

[24] V. S. Thokala, “A Comparative Study of Data Integrity and

Redundancy in Distributed Databases for Web Applications,” Int.
J. Res. Anal. Rev., vol. 8, no. 4, pp. 383–389, 2021.

[25] S. Goel and B. T. Cse, “Role of DevOps in Full-Stack Web
Development,” vol. 8, no. 5, pp. 9–14, 2023.

[26] N. Torvekar and P. Game, “Microservices and Its Applications An

Overview,” Int. J. Comput. Sci. Eng., vol. 7, pp. 803–809, 2019,
doi: 10.26438/ijcse/v7i4.803809.

[27] M. S. Samarth Shah, “Deep Reinforcement Learning For Scalable
Task Scheduling In Serverless Computing,” Int. Res. J. Mod. Eng.

Technol. Sci., vol. 3, no. 12, pp. 1845–1852, 2021, doi: DOI :
https://www.doi.org/10.56726/IRJMETS17782.

[28] S. Arora and S. R. Thota, “Automated Data Quality Assessment

And Enhancement For Saas Based Data Applications,” J. Emerg.

Technol. Innov. Res., vol. 11, pp. i207–i218, 2024, doi:
10.6084/m9.jetir.JETIR2406822.

[29] D. Jagli and S. Yeddu, “CloudSDLC: Cloud Software
Development Life Cycle,” Int. J. Comput. Appl., 2017, doi:
10.5120/ijca2017914468.

[30] S. M. Adedapo Paul Aderemi Shomili Duary, Vandana Sharma,
Pratyusha Choudhury, Deepak Dasaratha Rao, “Cybersecurity

Threats Detection in Intelligent Networks using Predictive
Analytics Approaches,” IEEE, 2024.

[31] A. G. Milavkumar Shah, “Distributed Query Optimization for

Petabyte-Scale Databases,” Int. J. Recent Innov. Trends Comput.
Commun., vol. 10, no. 10, pp. 223–231, 2022.

[32] B. W. Sorte, P. P. Joshi, and V. S. Jagtap, “Use of Artificial

Intelligence in Software Development Life Cycle: A state of the
Art Review,” 2015.

[33] Srinivas Murri, “Data Security Environments Challenges and
Solutions in Big Data,” vol. 12, no. 6, pp. 565–574, 2022.

[34] Y. Jani, “IMPLEMENTING CONTINUOUS INTEGRATION

AND CONTINUOUS DEPLOYMENT (CI/CD) IN MODERN
SOFTWARE DEVELOPMENT,” Int. J. Sci. Res., vol. 12, pp.
2984–2987, 2023, doi: 10.21275/SR24716120535.

[35] M. Yusuf, M. K. Sophan, A. K. Darmawan, B. D. Satoto, D. R.

Anamisa, and W. Agustiono, “Fast Collaboration Competencies

Model for Software Development Life Cycle (SDLC),” in 2023
IEEE 9th Information Technology International Seminar (ITIS),
2023, pp. 1–6. doi: 10.1109/ITIS59651.2023.10420226.

[36] M. A. Al Alamin and G. Uddin, “Quality Assurance Challenges

For Machine Learning Software Applications During Software

Development Life Cycle Phases,” in 2021 IEEE International
Conference on Autonomous Systems (ICAS), 2021, pp. 1–5. doi:
10.1109/ICAS49788.2021.9551151.

[37] H. Jayanthi, A. Kulkarni, A. E. Patil, and S. S V, “An
Organizational Structure for Sustainable Software Development,”

in 2021 3rd International Conference on Advances in Computing,

Communication Control and Networking (ICAC3N), 2021, pp.
1539–1542. doi: 10.1109/ICAC3N53548.2021.9725722.

[38] S. Reyal et al., “An Investigation into UI generation compliant
with HCI standards ensuring artifact consistency across SDLC,” in

2021 21st International Conference on Advances in ICT for

Emerging Regions (ICter), 2021, pp. 93–98. doi:
10.1109/ICter53630.2021.9774787.

