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Abstract—Cybersecurity has been getting a lot of attention 

lately due to the proliferation of important applications and the 

exponential rise of data networks and computers. Cybercrimes 

that are well-planned and ongoing pose a greater threat to the 

Internet. Because hackers are smart enough to get around all of 

the conventional security procedures in place to detect and 

prevent cyberattacks, these measures are worthless. There are a 

lot of cybersecurity apps that use machine learning (ML) 

methods. This study proposes an advanced cyber threat 

detection framework leveraging machine learning techniques on 

the UNSW-NB15 dataset. The proposed Inception model is 

benchmarked against conventional classifiers, including 

Random Forest (RF), k-Nearest Neighbors (KNN), and Multi-

Layer Perceptron (MLP). Experimental results demonstrate 

that the Inception model outperforms existing approaches, 

achieving an accuracy of 98.40%, precision of 99%, recall of 

97.90%, and an F1-score of 98.50%. Comparative analysis 

highlights its superior capability in threat detection and 

classification. Furthermore, visualization techniques, including 

confusion matrices and performance graphs, validate the 

model’s effectiveness. These results highlight the promise of 

models based on deep learning to improve cybersecurity by 

providing an efficient and scalable way to identify and prevent 

intrusions in real time. 

Keywords—Cybersecurity, Cyber Threat Detection, Intrusion, 

Artificial Intelligence (AI), Machine Learning (ML), Critical 

Infrastructure Security, Network Security, Threat Intelligence, 

UNSW-NB15.  

I. INTRODUCTION 

The rapid expansion of digital technologies has 
transformed the way individuals, organizations, and 
governments operate, driving increased connectivity through 
networks and the Internet. While this connectivity has enabled 
innovation, efficiency, and global collaboration, it has also 
introduced significant cybersecurity challenges[1]. As digital 
infrastructures grow, so do the risks associated with 
cyberattacks, ranging from malware infections and 
ransomware to sophisticated nation-state cyber threats[2][3]. 
These attacks can target sensitive data, disrupt operations, and 
cause financial losses, making cybersecurity a critical concern 
for modern society. Cyber threats continue to evolve in 
complexity, exploiting vulnerabilities in networks, software 
applications, and cloud environments[4]. Cybercriminals 
defeat conventional security measures by using sophisticated 
methods, including social engineering, DoS assaults, and 
zero-day vulnerabilities[5]. As a result, cybersecurity has 
shifted from reactive defense strategies to proactive threat 
detection and prevention, requiring robust and adaptive 
security frameworks. In this context, Cyber Threat Detection 

and Prevention (CTDP) has become an essential domain, 
particularly in critical infrastructure, where cyberattacks can 
have severe consequences on national security, public safety, 
and economic stability[6][7]. 

Critical infrastructure, including power grids, healthcare 
systems, financial institutions, and transportation networks, 
plays a vital role in societal functions[8]. Cyberattacks on 
these systems can lead to widespread service disruptions, data 
breaches, and financial losses. Traditional security 
mechanisms such as firewalls, intrusion detection systems 
(IDS), and rule-based security policies are proving inadequate 
against sophisticated, AI-powered cyber threats[9][10]. The 
advent of AI and ML has been a game-changer in 
cybersecurity, automating threat identification, anomaly 
analysis, and real-time intrusion prevention, among other 
tasks[11]. AI-driven cybersecurity frameworks leverage ML 
algorithms to detect malicious activities, predict potential 
threats, and respond autonomously to cyber incidents[12]. 
Techniques such as anomaly detection, behavioral analytics, 
and predictive modeling enhance security measures by 
identifying and mitigating attacks before it cause harm. 

A. Motivation and Contribution  

This work is motivated by the need for advanced 
cybersecurity solutions as traditional detection methods 
struggle against evolving threats like APTs and zero-day 
attacks. Traditional security measures fall short, making ML 
essential for real-time threat detection and automated 
response. This research aims to develop an efficient intrusion 
detection system to enhance security and resilience against 
cyberattacks. The key contributions of this research are as 
follows: 

 Leverages the UNSW-NB15 dataset to enhance 
machine learning-based cyber threat detection in 
critical infrastructure. 

 Effective handling of missing values, duplicate 
removal, and feature scaling to enhance model 
performance. 

 Identification of critical features influencing intrusion 
detection accuracy. 

 Implementation and evaluation of classifiers such as 
Random Forest, k-NN, and MLP for cyber threat 
detection in critical infrastructure. 

 Comparative analysis of models using accuracy, 
precision, recall, loss, and F1-score to assess detection 
effectiveness. 
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B. Justification and Novelty  

The increasing sophistication of cyber threats requires 
more advanced detection mechanisms beyond conventional 
machine learning models. Traditional classifiers like RF, 
KNN, and MLP struggle with high-dimensional network 
traffic and evolving attack patterns, necessitating more robust 
solutions. This study introduces the Inception model, a deep 
learning-based approach that leverages multi-layered feature 
extraction to improve threat detection. Unlike traditional 
models, the Inception architecture enhances generalization by 
capturing intricate patterns in network traffic, making it more 
effective in distinguishing normal and malicious activities. 
The novelty of this work lies in integrating deep learning with 
extensive feature selection, preprocessing, and comparative 
evaluation, providing a comprehensive framework for 
enhancing cybersecurity defenses. Additionally, performance 
visualization techniques such as confusion matrices and 
learning curves offer deeper insights into model reliability and 
real-world applicability. 

C. Structure of the paper 

The study is structured as follows: In Section II presents a 
Literature review on cyber threat detection. In Section III, the 
methodology is utilized to compile the data for this study. 
Section IV provides the results and analysis of effective 
classification. At last, Section V provides the conclusion. 

II. LITERATURE REVIEW  

This section discusses the Literature review on, Advanced 
cybersecurity for threat detection and intrusion prevention 
Also, Table I provide the summary of these literature reviews 
discussed below: 

Chaudhary et al. (2024) threat detection and automated 
response mechanisms. Compared to the current system, the 
results demonstrate notable increases in detection accuracy, 
False Positive and False Negative rates, and area under the 
curve (AUC) values across many test datasets. It achieves 
accuracy 89.7% for the existing system cyber threat detection 
and mitigation in cloud settings. By use of sophisticated 
anomaly detection and ML methods, the proposed system 
continuously analyzes large amounts of data to dynamically 
identify and eliminate new threats[13] 

Sharma and Babbar (2024) attempts to evaluate these 
models' effectiveness in the environment of cyber threat 
detection. that offer a through grasp of the models' efficacy. It 
also provides helpful suggestions for choosing the best 
infrastructure for improving security using machine learning-
based threat detection defense systems against changing cyber 
threats in actual network environments. the XGBoost model 
outperforms the other models (NB, LR and AdaBoost) with 
accuracy rates of 78%, 85%, and 90%[14]. 

Rajendran et al. (2024) cybersecurity solution adaptive to 
the changing threat framework’s extraordinary success in 
recognizing as well as mitigating diverse cyber dangers, 
including insider threats and zero-day attacks, through 
practical testing and case studies. The framework establishes 
itself as a proactive. Behavioral analysis, AI explain ability, 
IoT security, and countering quantum computing concerns 
should be the main areas of future research. Revelations help 
the cybersecurity industry become more resilient and well-
prepared. In on threat detection were conducted using deep 
learning algorithms, with a specific focus on CNNs and 

RNNs. The findings of the study reveal that a detection 
accuracy of 93% was achieved by CNN [15]. 

Gujar (2024) developed and validated through exercise 
scenarios in order to evaluate the impact on sectors of critical 
infrastructure like energy, transport, healthcare and others. 
The outcomes show that the system has received substantial 
enhancements in threat detection of multiple classes, with 
classification level of 94% and the false positive levels of 4%. 
The large-scale AI system was shown to be able to attain better 
scalability than the model trained on the local set without 
decreased performance during the high network utilization. 
Moreover, time responses for threat counteraction reduced 
dramatically as the system developed through iterations, 
demonstrating its real-time learning ability. It also describes 
difficulties that appear when applying the solution, for 
example, when it comes to data variety and integration of AI 
models with existing systems. Nonetheless, the solution that 
is proposed herein has the potential for achieving scalable and 
adaptive security in key sectors [16]. 

Almasri, Snober and Al-Haija (2022) employing SDNs, 
intrusion detection systems based on challenges, or pattern 
recognition employing ML. To find abnormalities, the 
Intrusion Detection and Prevention Systems scan network 
traffic for anomalies and compare it to known assaults. In 
order to effectively secure and defend the network against 
DoS and Port Scanning assaults, machine learning pattern 
recognition, network programmability features, and design are 
used. This ML technique was developed by selecting 
characteristics using Anova and then applying those features 
to several ML models. The most accurate ML model was the 
naïve Bayes one, coming in at 86.9% [17]. 

Atluri and Horne (2021) an approach to Cyber Threat 
Intelligence (CTI) is suggested, created, and evaluated. The 
study's findings are offered with the retrieved IOCs; the 
research used five distinct simulated assaults on a dataset 
derived from an ICS testbed. When it came to assessing 
accuracy, the Bagging Decision Trees model performed best 
with a score of 94.24% [18]. 

Tekin and Yilmaz (2021) used DL algorithms to analyze 
the cyber security data that Twitter provided. Classification of 
cyber threat intelligence (DDoS, malware, ransomware, etc.) 
is achieved using recursive neural networks applied to the 
dataset of tweets pertaining to cyber threat intelligence. An 
impressive 88.64% of the time were able to successfully 
determine the relevance of cyber threat information, and an 
even more impressive 89.49% of the time were able to identify 
the kind of threat data [19]. 

Current cyber threat detection models struggle with high 
false positives, poor adaptability, and computational 
inefficiencies. Traditional machine learning models lack 
robustness, while deep learning methods demand high 
resources, limiting real-time applications. To address these 
gaps, propose an Inception-based intrusion detection system, 
which enhances accuracy, reduces false alarms, and adapts 
effectively to evolving threats. Leveraging advanced feature 
extraction ensures superior detection while maintaining 
efficiency. Future research will focus on integrating 
explainable AI for better interpretability and optimizing 
computational efficiency to support real-time deployment, 
making cybersecurity systems more scalable, reliable, and 
responsive to emerging attack patterns. 
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TABLE I.  BACKGROUND SUMMARY OF CYBER THREAT DETECTION USING MACHINE LEARNING  

Author Dataset Methods Findings Limitations/Future Research 

Chaudhary et 
al. (2024) 

Multiple test datasets Anomaly detection, Machine 
Learning (ML) 

Achieved 89.7% accuracy in cyber 
threat detection and mitigation in cloud 

settings 

Continuous adaptation needed for 
evolving threats 

Sharma and 
Babbar (2024) 

Cyber threat detection 
environment 

XGBoost, Naïve Bayes 
(NB), Logistic Regression 

(LR), AdaBoost 

XGBoost outperformed others with 
accuracy rates of 78%, 85%, and 90% 

Model generalization in real-world 
environments 

Rajendran et 

al. (2024) 

Case studies and 

practical testing 

CNN, RNN CNN achieved 93% accuracy in threat 

detection 

Future focus on behavioral analysis, 

AI explainability, and quantum 
security 

Gujar (2024) Critical infrastructure 

(energy, transport, 
healthcare) 

Large-scale AI system for 

threat classification 

Classification accuracy of 94%, false 

positive rate of 4% 

Challenges in data variety and AI 

model integration with existing 
systems 

Almasri, 

Snober, and 

Al-Haija 
(2022) 

Network traffic 

datasets 

Software-defined networks 

(SDNs), Machine Learning, 

Anova feature selection, 
Naïve Bayes 

Naïve Bayes achieved highest 

accuracy of 86.9% for intrusion 

detection 

Enhancing real-time detection and 

response mechanisms 

Atluri and 

Horne, (2021) 

Industrial Control 

System (ICS) testbed 

dataset 

Cyber Threat Intelligence 

(CTI), Bagging Decision 

Trees 

Bagging Decision Trees achieved 

highest testing accuracy of 94.24% 

Need for testing across diverse attack 

scenarios 

Tekin and 

Yilmaz (2021) 

Twitter cybersecurity 

data 

Deep Learning, Recursive 

Neural Networks (RNN) 

88.64% accuracy in cyber threat 

intelligence classification, 89.49% 
accuracy in threat type classification 

Improvement needed in handling 

large-scale social media data 

III. METHODOLOGY 

The methodology for Cyber Threat Detection and 
Prevention by using machine learning methods is 
systematized by preprocessing the given data, selection of 
features, model building and evaluation. The UNSW-NB15 
dataset, consisting of 49 features of normal and malicious 
network traffic, is first used. Finally, the data are processed 
using mean or median values imputation, removing duplicate 
records, and Min-Max normalization for numeric data 
selection to normalize numeric features. A feature importance 
analysis reveals the main attributes that affect intrusion 
detection performance results. The next step is to use a 
predefined split in the dataset: 80% for training and 20% for 
testing. This will allow for a thorough assessment of the 
models. The processed data is then used to train ML classifiers 
like RF, KNN, and MLP. The models are then evaluated using 
a variety of metrics, including accuracy, precision, recall, loss, 
and F1-score. Then, a confusion matrix and heatmap analysis 
are used to examine classification performance and detect 
misclassifications. Finally, leveraging advanced machine 
learning techniques, this methodology enhances cyber threat 
detection and prevention in critical infrastructure. The overall 
process shows in Figure 1. 

 
Fig. 1. Flowchart for cybersecurity of threat detectionEach step of the 

flowchart is provided in the next section. 

Each step of the flowchart is provided in the next section. 

A. Data Description 

The UNSW-NB15 dataset was used in this investigation. 
The dataset, which has 49 attributes, is used to assess how well 
intrusion detection systems work. Realistic network traffic is 
included, mimicking both benign and malevolent activities. 
The attack category of the dataset is shown in Figure 2. 

 

Fig. 2. Bar chart of attack categories in dataset 

Figure 2 shows a horizontal barchart that displays the 
distribution of attack categories. The x-axis shows a count of 
instances, while the y-axis displays different attack categories 
(attack_cat). The "Normal" category exhibits the highest 
frequency, significantly surpassing all other attack types. 
Among attack categories, "Generic" and "DoS" (Denial of 
Service) attacks have substantial representation, followed by 
"Fuzzers," "Exploits," and "Backdoors". Other attack types, 
including "Reconnaissance," "Shellcode," "Analysis," and 
"Worms," appear less frequently. The imbalance in attack 
category distribution is an essential consideration for ML-
based IDS. 
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Fig. 3. Heatmap of UNSW-NB15 dataset  

The following Figure 3, shows heatmap of UNSW-NB15 
dataset across several categories: Fuzzers, Analysis, DDoS, 
Exploits, Backdoor, Normal, Generic, Shellcode, 
Reconnaissance, and Worms. The normalized proportions of 
predicted versus actual classifications, with darker shades 
indicating higher proportions and thus stronger classification 
accuracy, the model shows high accuracy in classifying 
'Generic' and 'Normal' categories, indicated by values of 0.98 
and 1.0 respectively, but exhibits confusion between 'Exploits' 
and 'DDoS' (0.89 vs 0.93), and misclassifies 'Shellcode' as 
'Shellcode' only 58% of the time. 

B. Data preprocessing 

Data preparation is crucial for enhancing model 
performance and guaranteeing high-quality data [20]. In this 
pre-processing step, First, missing values are handled and 
Duplicate values are removed to avoid redundancy that are 
listed in below:  

 Handle missing value –Replace missing values in a 
column with the mean or median value of that column 
and it missing values with a predefined constant value. 

 Drop duplicate rows – It remove duplicate rows while 
modifying the original Data Frame avoid redundancy 
This process ensures that only unique records remain, 
improving data quality for analysis. 

C. Feature scaling using Min–Max  

Feature scaling is a technique used to normalize or 
standardize data so that numerical values fall within a specific 
range, enhancing a performance of ML models[21]. Decimal-
scaling, Max-normalization and Min–Max scaling 
mathematically in Equation (1). 

 𝐹 =  
𝐹− 𝐹𝑚𝑖𝑛

𝐹𝑚𝑎𝑥−𝐹𝑚𝑖𝑛
 (1) 

It is a (feature space) input vector denoted by U(f1,…,fn), 
where N is the sum of all occurrences (features) present in the 
domain,[22] the standardization computation. 

D. Feature Importance 

Enhancing the effectiveness, understandability, and 
general usefulness of the intrusion detection model requires 
analyzing the scores of important characteristics. The 
significance ratings of several elements in creating a 
successful intrusion detection model are shown in Figure 4. 

 
Fig. 4. Feature importance score 

Figure 4 displayed a feature importance score for intrusion 
detection, with Sbytes being the most influential (F-score: 69), 
followed by ct_srv_src (44), ct_srv_dst (43), and proto (41). 
Other key features include ct_dst_src_ltm, ct_src_dport_ltm, 
and dlt, while features like response_body_len, oloss, and 
spkts have minimal impact. This highlights the critical 
network parameters essential for effective threat detection. 

E. Data splitting 

By splitting the datasets into 80% training and 20% testing 
sets, the chance of overfitting was decreased and thorough 
model performance monitoring throughout the whole dataset 
was made possible. 

F. Classification with Inception model  

Szegedy et al. presented the Inception model, a deep CNN 
architecture [23] with several branching structures in a single 
block, in the Large-Scale ImageNet Visual Identification. 
Without adding additional nodes to the network, each branch 
independently pulls features from the source maps, each with 
a unique receptive field size [24]. The dimensions of a feature 
map X are H × W × C. With n branches in an Inception unit 
and h, w, and ci being the dimensions of the output feature 
maps of the i-th branch, the last concatenation operation for 
each Inception is given by Equation (2): 

 Hout  ×  Wout  × Cout = h × w × ∑ Ci
n
i=1  (2) 

Inception's branches are made up of maximum pooling 
layers and convolutional layers. There is a single 
convolutional layer in each of the initial Inception unit's 
branches. The convolutional layer in the first branch collects 
samples and reduces their dimensions; in the second branch, 
it only collects samples; and in the third branch, the maximum 
pooling layer reduces their dimensions while keeping the 
greyscale maps' texture features. Two convolutional 
layers[25], make up the second Inception unit, which has a 
parallel branch topology. The third Inception unit has two 
branches: one for sampling and dimensionality reduction (a 
convolutional layer), and another for texture reduction (a 
maximum pooling layer) [26]. 

G. Performance Metrics 

The Performance Metrics assess and contrast the 
algorithms' outputs using four metrics. These metrics allow 
for a thorough evaluation of the model's performance in 
identifying network intrusions; their values range from 0 to 1. 
Metrics such as TP (True Positive), TN (True Negative), FP 
(False Positive), and FN (False Negative) are crucial for 
evaluating the accuracy and reliability; meanwhile, the 
confusion matrix values must be understood. A performance 



Sagar Bharat Shah, Journal of Global Research in Electronics and Communication, 2 (2) February 2025, 01-07  

 

© JGREC 2025, All Rights Reserved  5 

 

matrix including accuracy, recall, precision, and F1-Score, is 
shown below: 

Accuracy (ACC): It is the percentage of instances that 
were correctly classified relative to the total number of 
occurrences, taking into account both true positives and true 
negatives, as stated by Equation (3):  

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (3) 

Precision: As shown in Equation (4), it is the percentage 
of positive outcomes that were accurately anticipated relative 
to the total number of positive instances. 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

Recall (R): The percentage of accurate predictions 
relative to the overall number of true positives is called the 
recall value. Recall is defined mathematically in Equation (5) 
as follows: 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (5) 

F1-Score: Equation (6) defines the F1-score as the 
harmonic mean of precision and recall, providing a fair 
assessment of the two measures. 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗ 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

Loss:  The mathematical function known as loss assesses 
the difference between the model's projected normal and 
intrusion class classifications of network traffic. Some loss 
functions, such cross-entropy loss, are unable to reliably 
forecast occurrences of minority classes [27]. 

IV. RESULT ANALYSIS AND DISCUSSION 

The experiments are conducted on the Python 
programming language and utilize other devices such as 32 
GB of RAM, Personal computers, and intel core i7-8th Gen. 
This section provides the result analysis on the UNSW-
NB15dataset for threat detection and prevention system model 
across performance including accuracy, precision, F1-score 
and recall for different classifications. The proposed Inception 
model performance are shows in Table II. 

TABLE II.  RESULTS OF INCEPTION MODEL PERFORMANCE ON THE 

UNSW-NB15 DATASET FOR CYBER THREAT DETECTION 

Measure Inception model 

Accuracy 98.4 

Precision 99.0 

Recall 97.90 

F1-score 98.50 

 
Fig. 5. Bar Graph for Inception Model  

The above-following Figure 5 and Table II represent the 
Inception model performance on the UNSW-NB15 dataset. 
As shown in the graph, Inception achieves a high overall 

performance in classification tasks with an accuracy of 
98.40%, precision of 99.00%, re-call of 97.90%, and F1-Score 
of 98.50% for intrusion and threat detection. 

 
Fig. 6. Accuracy graph of Inception model 

The line plot showing an Inception model's training and 
validation accuracy across 50 epochs is displayed in Figure 6 
above. A y-axis shows the accuracy values, while an x-axis 
shows the number of epochs. The plot shows increasing 
training accuracy and fluctuating validation accuracy over 32 
epochs, stabilizing near 98.2%, indicating learning progress 
with minor generalization variations. 

 
Fig. 7. Loss graph of Inception model 

The loss curve graph in Figure 7 illustrates the training and 
validation loss over 30 epochs. The training loss (blue line) 
remains relatively stable with slight fluctuations, indicating 
consistent learning. The validity measure (orange line) 
displays a sudden increase at epoch 5 yet continues downward 
toward stability thereafter. The downward slope pattern of 
both lines demonstrates that learning has been successful 
while the slight validation loss changes point toward 
difficulties with generalization. The graphical display shows 
the model development process and its convergence 
characteristics in a simple manner. 

A. Comparative Analysis 

The comparative analysis for threat detection and 
prevention for different classification models on the UNSW-
NB15dataset is provided in this section. The comparison 
provides between Inception proposed and existing RF, KNN 
and MLP models based on performance matrices like 
accuracy, precision, recall, and f1-score, shows in Table III. 

TABLE III.  COMPARISON BETWEEN INCEPTION AND EXISTING MODEL 

FOR THREAT DETECTION AND INTRUSION PREVENTION 

Measure Inception RF[28] KNN [29] MLP[30] 

Accuracy 98.40 92.05 84.7 89.75 

Precision 99 95.34 83.1 83.74 

Recall 97.90 92.05 85.1 93.86 

F1-score 98.50 93.04 82.2 88.51 
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The proposed Inception model gets compared to existing 
threat detection and intrusion prevention models RF, KNN, 
and MLP through this analysis presented in Table III. 
Inception model surpasses other evaluated models by 
achieving 98.40% accuracy which stands as the highest score 
and surpasses RF at 92.05% and KNN at 84.7% and MLP at 
89.75%. Digital Inception Model provides a precision level of 
99% while exceeding RF at 95.34% and KNN at 83.1% and 
MLP at 83.74%. Similarly, recall 97.90% remains higher than 
RF 92.05%, KNN 85.1%, and MLP 93.86%. The F1-score 
98.50% of the Inception model demonstrates superior 
performance by surpassing RF 93.04%, KNN 82.2% along 
with MLP 88.51%, which indicates its balanced precision and 
recall configuration. The intrusion detection functions of the 
Inception model outperform conventional ML methods 
according to these assessment results. 

The proposed Inception model provides superior features 
than conventional ML classifiers for detecting cyber threats. 
The DL structure of this model provides efficient processing 
of multiple feature layers which enables it to detect 
sophisticated network patterns with greater effectiveness than 
models including RF, KNN and MLP. Autonomous learning 
of intricate representations by the Inception model enhances 
its ability to adapt to changing cyber threats instead of 
requiring human-engineered features. High-dimensional data 
processing within its architecture enables the model to achieve 
better attack-type generalization. Additional validation of 
model robustness emerges from both comparative evaluation 
techniques followed by performance visualization results that 
prove its effective classification abilities. 

V. CONCLUSION AND FUTURE WORK 

Cyber-attacks are growing and requirements of intrusion 
detection mechanisms are assumed to be robust, responsive 
and adaptive. In this context, deep learning models 
demonstrate the essence of implementing artificial 
intelligence related techniques in the modern cybersecurity 
framework to upgrade the real time threat detection systems. 
This paper employs various design multiple models like 
Inception, RF, KNN, and MLP on the UNSW-NB15 dataset 
after performing very robust preprocessing such as handling 
missing value, removal of duplicate, and feature scaling. 
Among these models, the Inception model achieved highest 
performance with 98.40% accuracy, 99.00% precision, 
97.90% re-call and F1 score of 98.50%, higher than traditional 
classifiers. However, the model’s results are strong, and it has 
also drawbacks in terms of suitability for deployment in the 
real world given the model’s high computational complexity 
and its risk of overfitting to certain attack patterns. Future 
work will be on optimizing the computationally efficient, as 
well as real time adaptive learning for attacking threats, and as 
well as incorporating the explainable artificial intelligence 
techniques in cybersecurity applications. 
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