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Abstract—The production of semiconductors is among the 

most technologically complex and intricate industrial processes. 

Given the hundreds of steps involved in semiconductor 

production, a defective wafer detection system that enables early 

wafer identification is necessary. Virtual metrology (VM) and 

statistical process control (SPC) have been used to identify 

defective wafers. The purpose of this research is to examine how 

machine learning (ML) methods may be used to enhance the 

accuracy of semiconductor manufacturing defect detection. By 

leveraging the WM811K dataset, which includes over 800,000 

wafer images with multiple defect categories, the research 

applies a Convolutional Neural Network (CNN) integrated with 

data augmentation to enhance model performance. The 

proposed CNN-AUG model effectively addresses challenges 

such as data imbalance and overfitting, yielding an accuracy 

98.56%, precision 98.77%, recall 98.78%, and an F1-score 

98.77%. Comparative analysis with VGG19 and XGBoost 

demonstrates the superior performance of CNN-AUG in 

capturing intricate spatial features and improving fault 

detection efficiency. The results highlight the potential of ML-

based approaches for optimizing semiconductor manufacturing 

processes, reducing defects, and enhancing yield.  

Keywords—Semiconductor Manufacturing, Fault Detection, 

Machine Learning, WM811K Dataset, Data Augmentation. 

I. INTRODUCTION 

The detection of faults within semiconductor production 
stands essential for reaching optimal operational efficiency 
alongside maintaining superior product quality standards[1]. 
The detection of defects becomes challenging because 
semiconductor fabrication includes various complex multi-
step processes that involve silicon wafer treatment through 
deposition and etching photolithography and ion 
implantation[2]. The use of highly automated precise 
equipment in clean environments fails to eliminate inevitable 
errors and defects which appear in wafer dies. The 
combination of Machine learning (ML) methodologies with 
sophisticated preprocessing techniques shows promise for 
improved manufacturing results and enhanced defect 
detection[3][4]. 

The semiconductor production technique oversees the 
complete series of manufacturing sequences for batches of 25 
silicon wafers until integrated circuits (ICs) are functional[5]. 
Multiple process operations extending for months result in 
hundreds of disruptions including equipment deterioration 
coupled with maintenance routines and changes in 
environmental conditions[6]. The multiple stages of process 

variability appear at intra-wafer and inter-wafer and intra-
batch and inter-batch levels due to such disruptions[7]. Large 
amounts of process equipment sensor data, including 
temperature and pressure, together with gas flow and power 
data, can be analyzed through ML models to solve current 
manufacturing difficulties[8]. As the data-driven technique 
provides live process supervision and promotes timely fault 
identification it attains the purpose of lowering operational 
variations and enhancing yield performance[9]. 

Manufacturers who merge ML into their semiconductor 
operations receive operational advantages in addition to 
enhanced fault identification[10]. The implementation of 
these system elements produces lower maintenance expenses, 
shorter equipment outages, longer spare part lifespan better 
operational safety and better total production output[11]. 
Industrial facilities can discover and address system problems 
in advance through predictive maintenance by detecting faults 
this enables them to avoid high maintenance expenses and 
maintain consistent output quality[12]. 

A. Motivation and Contributions of the Study 

In semiconductor manufacturing, high yield, cost 
reduction, and product dependability all depend on accurate 
defect detection. Traditional fault detection methods often 
struggle with complex manufacturing processes, high-
dimensional data, and subtle defect patterns. A viable 
alternative is ML, which uses sophisticated algorithms to sift 
through massive datasets in search of outliers and ways to 
enhance predicted accuracy. By integrating these techniques, 
manufacturers can enhance process efficiency, minimize 
defects, and achieve higher levels of automation. The ultimate 
goal of this research is to help make semiconductor 
manufacturing more dependable by investigating how well 
machine learning models work for problem detection. This 
research's principal contributions encompass: 

 Employs the WM811K Dataset to examine wafer 
defect patterns, guaranteeing rigorous model training 
and assessment. 

 Employs preprocessing methods include the 
management of absent data, the use of labelled 
datasets, and the application of data augmentation to 
enhance data quality and model generalization. 

 Assesses various machine learning models, including 
CNN-AUG, VGG19, and XGBoost, to extract spatial 
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features, hierarchical representations, and advantages 
of ensemble learning for precise defect identification. 

 Examines models using F1-score, Accuracy, 
Precision, and Recall to guarantee a comprehensive 
evaluation of detection resilience and effectiveness. 

B. Organization of the paper 

This paper explores improving fault detection in 
semiconductor manufacturing using machine learning. 
Section II reviews existing techniques, Section III examines 
machine learning’s role, and Section IV covers data and 
preprocessing. Section V details the proposed CNN model, 
Section VI compares it with baseline models, and Section VII 
discusses results and challenges. Important results and 
directions for the future are presented in Section VIII. 

II. LITERATURE REVIEW 

The literature review on fault detection in semiconductor 
manufacturing highlights an application of ML techniques to 
enhance detection accuracy, optimize manufacturing 
processes, and support efficient decision-making in quality 
control and defect prevention. 

In this study, Tsai and Lee (2020) suggested using depth-
wise separable convolutions as the basis for a reduced-weight 
architecture classifier. The real-world Wafer Map dataset 
(WM-811K) is used to validate the whole study. In the test set, 
the accuracy is 96.63%. The test procedure is the primary 
source of manufacturing cost in the IC design process. To 
ascertain the process's current state, existing tests depend on 
the engineer doing extra analysis on the testing result data. 
Consequently, it may need more time and cannot quickly 
implement process improvements. An essential component of 
semiconductors is wafer map defect recognition. Engineers 
can swiftly determine the kind of failure because to the wealth 
of information included in wafer maps[13]. 

In this study, Tziolas et al. (2022) the suggested CNN-
based model is used on the publicly available but very 
unbalanced industrial dataset WM-811K and makes use of a 
number of pre-and post-processing techniques. To address 
imbalance, a solution is suggested that treats each class 
independently by using distinct processing methods for data 
augmentation, splitting, and down-sampling depending on the 
sample size. Outperforming competing models in the relevant 
literature, the suggested model identifies the vast majority of 
classes with a 95.3% accuracy and a 93.78% macro F1-score 
[14]. 

In this study, Zhai, Shi and Zeng (2023) puts forward a 
domain-specific Auto ML (called an Auto Classifier) for 
anomaly detection and defect identification to enable end-to-
end machine learning by self-learning the best models for 
semiconductor flaws. The first step is feature engineering, 
which entails cleaning the data, extracting features using 
interpolation techniques, and then selecting the best features 
to use from the SECOM dataset. the focused loss is included 
in cutting-edge classifiers XGBoost and LightGBM, which 
aim to resolve the pervasive data imbalance in the 
manufacture of semiconductor wafers. After going from an 
overall F1 score of 85% to 92.3%, the comparison and 
algorithm selection show that focus loss is beneficial[15].  

In this study, Park et al. (2024) analyzed and preprocessed 
data to determine the likelihood of excellent and faulty 

products in semiconductor production, with the goal of 
increasing yield while decreasing costs via the use of ML. This 
is accomplished by using the SECOM dataset and carrying out 
preparation procedures such managing missing values, 
reducing dimensionality, resampling to fix class imbalances, 
and scaling. Lastly, measures like the geometric mean (GM) 
were used to compare and contrast six ML models that were 
trained on unbalanced data using different combinations of 
preprocessing strategies. With the goal of decreasing training 
and prediction timeframes, this study differs from others in 
that it suggests ways to decrease the amount of features used 
in ML. This work goes a step further by segregating the 
training and test datasets prior to analysis and preprocessing, 
which eliminates data leaking during this stage. Using 
oversampling approaches (not including KM SMOTE) leads 
to more equitable class categorization, according to the 
findings. The most effective combination was SVM with 
ADASYN and MaxAbs scaling, which achieved an accuracy 
of 85.14% and a GM of 72.95%, respectively[16]. 

In this study, Tsai and Lee (2020) showcase a process for 
improving wafer map data and categorizing defects. The CNN 
encoder-decoder is the basis of the data augmentation, while 
depth-wise separable convolutions provide the basis of the 
classification. The first dataset is the open-source WM-811K 
dataset, while the second is a custom-built one that was jointly 
created with a company in Taiwan. Two models are trained 
using mobilenetV1 and V2 for the two datasets. Testing 
houses with high production volumes might benefit greatly 
from the lightweight deep convolution's ability to decrease 
model parameters and computations. Their suggested 
approach may decrease the amount of computation by 75% 
and 95% and the number of parameters by 30% and 95% on 
two separate data sets, respectively. There is a 93.95% test 
accuracy in the first dataset. There is an accuracy of 87.04% 
in the second dataset. Achieving 97.01% and 95.09% 
accuracy, respectively, after data augmentation [17]. 

In this study, Bhatnagar, Arora and Chaujar (2022) 
showcase and contrast several transfer learning techniques 
that can label the wafer map with the appropriate faults. Their 
trials evaluate the efficiency of several models based on 
transfer learning, such as VGG19, MobileNet, ResNet, and 
DenseNet, using the WM811K dataset, which represents a 
real-world wafer map. Eight different types of wafer map 
defects are included in the dataset. They have grouped all of 
the flaws into four different types, which will be covered later 
on in the study. The results show that VGG19 attained the best 
accuracy of 95.56% on the test data, according to their 
trials[18]. 

In this study, Chen et al. (2023) suggested functionality. 
Higher fine-grained and richer features may be obtained via a 
fusion module to preserve crucial information and capture 
significant texture characteristics. The results of the last trials 
show that MFFP-Net has great generalizability and can 
achieve state-of-the-art performance on the real-world dataset 
WM-811K. This provides a realistic way for the chip 
manufacturing industry to boost yield rate[19]. 

Table I presents the identified research gaps in previous 
studies on fault detection in semiconductor manufacturing 
using machine learning techniques, highlighting key areas that 
require further exploration and advancement. 



Vikash Prajapati, Journal of Global Research in Electronics and Communication, 1 (1) January 2025, 20-25 

 

© JGREC 2025, All Rights Reserved  22 

 

TABLE I.  SUMMARY OF THE RELATED WORK BASED ON FAULT DETECTION IN SEMICONDUCTOR MANUFACTURING USING MACHINE LEARNING 

APPROACHES. 

References Methodology Dataset Performance Limitations & Future Work 

[13] CNN-based classifier with reduced-
weight architecture using depthwise 

separable convolutions 

WM-811K 96.63% accuracy Limited focus on handling data 
imbalance; future work can explore 

adaptive weighting techniques 

[14]  Pre- and post-processing techniques 

with CNN-based model, handling 
imbalance through down-sampling, 

splitting, and augmentation 

WM-811K 95.3% accuracy, 93.78% macro 

F1-score 

Requires further investigation into 

advanced data augmentation 
techniques and handling rare defect 

classes 

[15] Auto ML-based system (Auto 

Classifier) integrating feature 
engineering and focal loss with 

LightGBM and XGBoost. 

SECOM F1-score improved from 85% to 

92.3% 

Needs further validation on other 

industrial datasets and exploration 
of deep learning-based approaches 

 [16] Machine learning models with 
preprocessing steps (missing value 

handling, dimensionality reduction, 

resampling, scaling) 

SECOM SVM with ADASYN & MaxAbs 
scaling achieved 85.14% 

accuracy, 72.95% GM 

Further optimization of 
preprocessing and feature selection 

needed; alternative oversampling 

methods could be explored. 

[17] CNN encoder-decoder for data 

augmentation, Depth wise separable 

convolutions for classification 

WM-811K (open 

dataset) & Taiwan 

company dataset 

Accuracy: 93.95% → 97.01% 

(WM-811K) 87.04% → 95.09% 

(Taiwan dataset) Reduction in 
parameters: 30%-95% Reduction 

in computation: 25%-75% 

Potential limitations in 

generalizability, real-time industrial 

deployment challenges, impact of 
augmentation on unseen defects 

[18] Transfer learning-based 

classification using VGG19, 
MobileNet, ResNet, DenseNet 

WM-811K VGG19 achieved highest accuracy 

of 95.56% 

Merging defect classes may affect 

generalizability; future work can 
focus on fine-grained defect 

classification. 

[19] Feature fusion module (MFFP-Net) 
to enhance fine-grained feature 

extraction 

WM-811K 96.71% accuracy Generalization to other 
semiconductor datasets needs 

validation; further improvements in 

interpretability could be explored. 

III. METHODOLOGY 

This study aims to improve fault detection accuracy in 
semiconductor manufacturing using machine learning 
techniques. By applying a CNN with data augmentation to the 
WM811K dataset, the research focuses on effectively 
identifying wafer defects and addressing challenges like data 
imbalance and overfitting. Performance is evaluated through 
metrics like F1-score, recall, accuracy, and precision, with 
comparisons to models like VGG19 and XGBoost. The 
evaluation's findings will contribute to the improvement of the  

methodology for improving fault detection in 
semiconductor manufacturing involves utilizing the 
WM811K dataset, which contains 811,457 wafer images, 
including 172,950 manually labeled images across eight 
defect categories. Preprocessing steps include handling 
missing values, noisy data, and inconsistencies, followed by 
data augmentation using an autoencoder for dimensionality 
reduction and noise introduction to expand the dataset and 
enhance model performance. The dataset is split into 80% for 
training and 20% for testing. The CNN architecture uses 
convolutional layers, activation functions (ReLU), fully 
connected layers, and pooling layers to classify and extract 
features. The model's performance is evaluated using 
confusion matrix analysis and key measures like as F1-score, 
recall, precision, and accuracy. Comparative analysis with 
VGG19 and XGBoost demonstrates the superior fault 
detection accuracy of the CNN-AUG model, which 
effectively captures intricate spatial features. 

 

Fig. 1. Flowchart depicting the machine-learning based fault detection 

process in semiconductor manufacturing.  

The following steps of a flowchart based on fault detection 
in semiconductor manufacturing briefly explained in below: 

A.  Data Collection and preprocessing  

Utilized the WM811K semiconductor dataset for their 
experiments. There are 811,457 photos of wafers in this 
extensive collection, which also includes information like 
batch numbers, indices, and core dimensions. The dataset was 
collected from 47,543 physical lots from a FAB, with each lot 
consisting of 25 wafers. However, although 47,543 lots would 
yield 1,557,325 wafers, the dataset contains only 811,457 
wafer images. The process of transforming unstructured data 

WM811K Dataset  Data preprocessing  

Handling Missing 

Values Labelled Data 

Data Augmentation 

Data Splitting 

Training set Testing set 

Models like CNN-

AUG, VGG19, 

XGBoost  

Evaluation Metrics 
Accuracy, Precision, 

Recall and F1 score 

Fault Detection 
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into a more usable format is known as data preparation. Before 
running the method on the dataset, it undergoes preprocessing 
to remove any inconsistent or missing values, noise, or other 
issues. The manually labeled portion of the dataset comprises 
172,950 images with 8 distinct labels (0-7). Due to sensor 
malfunctions or other unidentified problems, not every batch 
has 25 wafer images. As a result, 172,950 wafers were labeled, 
while the remaining 78.7% of the wafers were unlabeled. 
Among the labeled wafers, 25,519 wafers (3.1%) were 
defective, while the remaining 147,431 wafers were intact. 
This highlights the scarcity of defective samples available for 
training the model. The distribution of defects is as follows: 
Center: 4294, Donut: 555, Edge-Loc: 5189, Edge-Ring: 9680, 
Loc: 3593, Random: 866, Scratch: 1193, Near-full: 149. The 
dataset contains 18.2% normal, defect-free wafers (labeled as 
8), whereas the other labels (0–7) indicate different patterns of 
defects. Data augmentation is used to improve size of the 
dataset. Data augmentation is implemented through the use of 
an autoencoder model for dimensionality reduction into the 
latent space, where noise is introduced, and the wafer map 
data is reconstructed, ultimately increasing the sample size 
and improving the model’s performance. 

B. Data Splitting 

The dataset is partitioned into two subsets to enhance fault 
detection accuracy: 80% is allocated for model training, 
facilitating the development of an effective fault detection 
system, while the remaining 20% is reserved for testing to 
assess the model’s performance and generalizability in 
semiconductor manufacturing. 

C. Implementation of Classification Using CNN with Data 

Augmentation 

There are a wide variety of CNN topologies. Certain layers 
are required for integrating input before classification, such as 
pooling layers, convolution layers with activation functions, 
and a completely connected layer or layers. Next, the feature 
maps were retrieved by the convolution layers. To make the 
subsequent layers' processing simpler, the pooling layers 
concentrated the feature maps using techniques like 
maximizing or average values inside a certain frame [20]. The 
categorization process begins after these layers and continues 
with a completely connected layer or layers. They will not 
restate the arguments presented in the literature that CNN is 
successful in feature extraction. Each of the tagged images is 
used as input during the training phase when the CNN is 
expected to deliver the correct label. Depending on how many 
epochs or the convergence threshold is chosen, the complete 
training process may take a lengthy time. 

Weight matrices w, and bias matrices b are the building 
blocks of each convolution layer; the training process updates 
and initializes these matrices. Equation 1 would display the 
results of every convolution layer: 

 𝑥𝑖
𝑙 =  𝜎 (∑ 𝑤𝑖𝑥𝑗

𝑙−1 ×𝑖𝜖𝐹𝑀𝑗
𝑘𝑖𝑗

𝑙 +  𝑏𝑗
𝑙) 

where σ(.) denotes an activation function for every link 
from i to j, l denotes a layer, FM denotes a feature map, k 
denotes a convolution kernel, b denotes a bias, and. The 
activation function is, generally, a ReLU function, where 
ReLU(x) = max (0, x), and 

𝑅𝑒𝐿𝑈(𝑥) = max(0, 𝑥) , 𝑎𝑛𝑑

 
𝑑

𝑑𝑥
𝑅𝑒𝐿𝑈(𝑥) = {

1, 𝑖𝑓 𝑥 > 0
    0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 

D. Key Performance Evaluation Metrics 

The efficacy of the deployed model may be evaluated with 
the help of the performance measures. Several metrics provide 
light on how well ML models are doing in general, including 
accuracy, recall, F1-score, and precision. 

1) Confusion matrix  
Statistical classification is the main use for the confusion 

matrix, often known as the error matrix. A particular table 
arrangement enables the visualization of an algorithm's 
performance. One need not assume a relationship between the 
two values if the projected value appears in the row of the 
matrix and the actual value in the column. False positive (FP), 
true negative (TN), true positive (TP), and true negative (FN) 
are the four cells that make up the output matrix. TP indicates 
that the actual and anticipated values are positively related to 
one another; TN indicates a favorable correlation between the 
observed and anticipated values; A negative correlation 
among the actual and anticipated values of the model is 
represented by FP; and the negative correlation among the 
actual and projected values is represented by FN. The 
following performance matrix discussed below in detail: 

2) Accuracy 
A classifier's accuracy is defined as the frequency with 

which it makes right predictions from the whole dataset, as 
shown in Equation (3). 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
 

3) Precision 
Precision is defined as the ratio of total TP to the total TP 

plus FP. The formula is presented in Equation (4). 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

4) Recall  
The amount of FN included in a prediction mixture is the 

main focus of recall [21]. Equation (5) calculates the recall, 
which is often called the sensitivity or true positive rate:  

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

5) F1-score  
Equation (6) defines the F1-score, which is the harmonic 

mean of recall and precision.  

 𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 

These performance metrics are utilized to assess an 
efficacy of a model by examining its outcomes on the test set. 

IV. RESULT ANALYSIS AND DISCUSSION 

The CNN-AUG, VGG19, and XGBoost models proved to 
be the most successful in detecting errors in semiconductor 
production when tested against other machine learning 
algorithms. In terms of detecting complex spatial 
characteristics, the CNN-AUG model performs better than 
standalone models, according to the comparison. A variety of 
visual representations, including the confusion matrix, 
training/validation accuracy/loss plots, and performance 
measures including recall, accuracy, precision, and F1-score, 
provide light on how well the models improved fault detection 
accuracy. 

TABLE II.  CNN-AUG MODEL PERFORMANCE BASED ON FAULT 

DETECTION USING WM811K DATASET. 
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Metrics CNN-AUG 

Accuracy 98.56  

Precision 98.77  

Recall 98,78 

F1 Score 98.77 

 
Fig. 2. CNN-AUG Performance in fault detection in semiconductor 

manufacturing. 

Table II and Figure 2 displays the results of CNN-AUG's 
fault detection performance in semiconductor production, as 
measured by F1 score, recall, accuracy, and precision. The 
outcomes indicate a high level of performance across all 
metrics, with F1 score demonstrating the highest value at 
98.8%. This suggests that CNN-AUG is effective in 
identifying and classifying faults in semiconductor 
manufacturing processes. 

 
Fig. 3. Training and validation loss of CNN-AUG model 

Figure 3 displays the accuracy of an ML model that was 
trained and validated to identify faults in semiconductor 
production. Validation accuracy reaches a ceiling when model 
performance on training data rises continuously. This raises 
the possibility of overfitting, a phenomenon in which a model 
becomes too reliant on its training data and fails to adequately 
adapt to more complex manufacturing problems. Fixing this 
overfitting is the first step toward making semiconductor 
manufacturing defect detection systems more accurate and 
reliable. 

 

Fig. 4. Training and validation loss of CNN-AUG model 

Figure 4 illustrates the training and validation loss of a 
machine learning model used for fault detection in 
semiconductor manufacturing. The model is learning as the 
training loss goes down, which is a good sign. The validity 
loss, however, drops at first before beginning to rise above a 
certain threshold. Overfitting occurs when a model learns 
patterns in its training data that do not translate well to novel, 
unseen data; this might be happening if the model is not 
careful. 

 
Fig. 5. Confusion matrix for fault detection in semiconductor 

manufacturing 

Figure 5 visualizes the confusion matrix performance of a 
fault detection model in semiconductor manufacturing, likely 
using data augmentation. The diagonal values, close to 1, 
indicate high accuracy in classifying faults into their 
respective categories. Off-diagonal values close to 0 suggest 
minimal misclassification. The matrix demonstrates the 
model's effectiveness in correctly identifying different fault 
types, which is crucial for improving yield and reducing 
defects in semiconductor production. 

TABLE III.  COMPARISON EVALUATION OF ML MODELS 

PERFORMANCE FOR FAULT DETECTION 

Metrics Accuracy Precision Recall F1 Score 

CNN-AUG  98.56  98.77  98.78 98.77 

VGG19 [22] 89.3 90.15 89.46 89.49 

XGBoost [23] 89 87 89 88 

 
Fig. 6. Comparative Evaluation of ML Models for Load Forecasting 

The Table III and bar graph in the Figure 6 compares four 
key metrics: F1 Score, Recall, Precision, and Accuracy, across 
three models: XGBoost, VGG19, and CNN-AUG. The scores 
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are represented as percentages, ranging from 80% to 100%. 
CNN-AUG consistently outperforms the other two models 
across all metrics, achieving nearly perfect scores. VGG19 
shows moderate performance, while XGBoost has the lowest 
scores. The visual representation facilitates easy comparison 
and highlights the superior efficacy of the CNN-AUG model 
in fault detection. 

V. CONCLUSION AND FUTURE SCOPE 

Improving fault detection precision in semiconductor 
production is essential for enhancing product quality and 
minimizing faults. Utilizing machine learning methodologies, 
especially deep learning, can lead to substantial enhancements 
in defect classification. Of the assessed models, CNN-AUG 
exhibited superior performance, attaining 98.56% Accuracy, 
98.77% Precision, 98.78% Recall, and 98.77% F1-score, 
thereby validating its efficacy in identifying semiconductor 
flaws. The implementation of preprocessing strategies, such 
as addressing missing values, utilizing labeled data, and 
applying data augmentation, enhanced model resilience. 
These findings highlight the capability of AI-driven solutions 
in enhancing semiconductor production processes. However, 
the model's reliance on extensive labeled datasets and data 
augmentation techniques may limit its deployment in 
environments with scarce resources. Additionally, further 
investigations are necessary to validate the model's scalability 
and adaptability across various semiconductor manufacturing 
conditions. 

Future research may investigate hybrid deep learning 
models that combine CNNs with transformers to improve 
feature extraction. Employing semi-supervised or 
unsupervised learning can mitigate issues associated with 
insufficient labelled data. Furthermore, real-time fault 
detection with edge computing and model interpretability 
methods such as SHAP can improve industry adoption. 
Subsequent optimizations will enhance the creation of more 
precise, scalable, and intelligent defect detection systems, 
hence augmenting semiconductor manufacturing efficiency. 
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