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Abstract—In semiconductor production, automated wafer 

defect pattern detection is a crucial procedure that improves 

product quality, yield, and efficiency. The paper introduces a 

powerful deep learning-powered system of classifying wafer 

defects based on a 1D-Convolutional Neural Network (1D-

CNN). The WM-811K wafer map dataset, the biggest publicly 

available dataset based on actual wafer manufacturing 

processes in industry, is used to assess the suggested approach. 

Data analysis and visualization are first conducted 

comprehensively regarding the distribution of wafer index, 

frequencies of defects and patterns of spatial failures. A large 

preprocessing pipeline is used to guarantee the reliability and 

consistency of data, such as data cleaning, filtering out non-

defective and inaccurate samples of failure types, remapping 

pixel values to grayscale, converting the grayscale to RGB, 

image resizing and data augmentation. These procedures are 

highly successful in raising dataset quality and model 

generalization. The 1D-CNN model is trained to efficiently 

acquire discriminative defect features after the filtered data is 

divided into training and testing data. The following measures 

are used to evaluate the model's performance: accuracy, 

precision, recall, F1-score, loss, and AUC-ROC. Results of the 

experiment indicate that the suggested 1D-CNN has 99.0% 

accuracy and 99.0% AUC-ROC, which is superior to several 

other cutting-edge methods. The results indicate the practical 

applicability, soundness, and efficacy of the suggested 

framework in automated inspection of defects in the wafer of 

semiconductor manufacturing.  

Keywords—Wafer Defect Pattern Recognition, Semiconductor 

Manufacturing, Deep Learning, Wafer Map Analysis, Automated 

Inspection, Defect Classification.  

I. INTRODUCTION 

Wafers are regarded as a significant resource in the 
semiconductor industry as they are the most important 
semiconductor material. The two types of wafers are prime 
wafers and test wafers [1]. The test wafers are further divided 
into two categories: control (monitor) and counterfeit wafers. 
Although integrated circuits are built using prime wafers, test 
wafers are mostly used to maintain machinery and verify 
parameters throughout the production process. However, only 
test wafers can be recovered because the prime wafer was 
converted into IC chips [2]. Increased reusability boosts the 
IC foundries' profits and, consequently, their competence. 
Recycling or reclaiming wafers is important since they are a 
precious and finite resource that may drastically reduce 
production costs [3]. In other words, Increased reusability 
boosts the IC foundries' profits and, consequently, their 
competence. 

Expert inspectors frequently carry out the manual early 
detection of wafer surface flaws, which have drawbacks 
including high cost, high subjectivity, low efficiency, and poor 
precision that cannot meet the standards of modern 
industrialized goods. Currently, machine vision-based defect 
detection methods replace manual inspection in the field of 
wafer inspection. In semiconductor production, wafer surface 
defect detection is crucial to maintaining product quality and 
has emerged as a key area of computer vision research [4]. 
Conventional machine vision-based fault detection techniques 
frequently rely on labor-intensive human feature extraction.   

Silicon wafers, which go through several steps to become 
semiconductor components, are essential to the production of 
semiconductors. The dynamics of the semiconductor industry 
are linked to the expansion of the industry. Recent constraints 
in the semiconductor chain have affected advanced and 
mature wafer manufacturing capacity due to Increased safety 
stockpiles and cautious supply-side expansion due to COVID-
19. The quality of wafers, the basic building block of 
semiconductors, is decided after many stages of 
manufacturing and is impacted by a number of variables, such 
as staff, equipment, and timetable. Significant losses result 
from defects that frequently go undetected until after wafers 
are utilized by consumers [5]. The tolerance for metal 
contamination declines with the complexity and size of 
semiconductor components, potentially resulting in issues 
with quality. 

Preventive maintenance, reducing downtime, and 
lowering maintenance costs all depend on artificial 
intelligence [6] monitoring and prediction capabilities [7]. 
Corporate production efficiency and competitiveness are 
enhanced by technology that blends AI and AOI [8] in the 
highly competitive global market. The method is also 
applicable to other high-precision production fields, including 
aerospace manufacturing, biomedicine, and sophisticated 
semiconductors [9][10][11]. This technology offers more 
technical innovation. In recent years, DL inspection 
methods[12] are embodied in CNN, which have become the 
industry standard for identifying defects in semiconductor 
production processes because to their high-speed automation, 
low cost, high accuracy, and non-contact nature [13]. 

A. Motivation and Contribution of the Paper 

Wafers are a rare and valuable material in the production 
of semiconductor devices, and thus early and correct fault 
detection is necessary to enhance the yield, minimize the 
price, and facilitate the successful reuse of the wafers. Manual 
inspection is inefficient, subjective, and expensive; and the 
conventional machine vision approaches based on manually-



Dr. D. Yadav, Journal of Global Research in Electronics and Communication, 2 (2) February 2026, 22-27 

© JGREC 2026, All Rights Reserved   23 

designed features are not very robust to complex-shaped 
defects. As the complexity of wafer and quality requirements 
increases, defects can go unnoticed until late and lead to huge 
losses. These issues inspire this study, as it aims at creating an 
effective deep learning-based solution to automated wafer 
defect pattern recognition in to improve inspection's precision, 
dependability, and industry applicability. The main 
contributions are: 

• Analysis and collection of a large-scale WM-811K 
dataset of wafer map (large scale) the largest publicly 
accessible dataset of wafer production processes. 

• Design of a powerful data preprocessing pipeline, such 
as data cleaning, mapping pixel values, converting to 
RGB, resizing of images, and data augmentation to 
increase the model's resilience and the caliber of the 
data. 

• Design and implementation of an efficient 1D-CNN–
based classification framework for automated wafer 
defect pattern recognition. 

• Large-scale performance evaluation based on a 
number of parameters, including learning curves, 
confusion matrix analysis, recall, accuracy, precision, 
F1-score, loss, and AUC-ROC. 

B. Significance of the Study 

The proposed research is important because it introduces 
a well-operating and trustworthy deep learning framework to 
recognize the pattern of automated wafer defects on a large 
scale of a realistic dataset. The proposed methodology shows 
good generalization and is characterized by high classification 
accuracy due to the use of rigorous data preprocessing, 
meaningful visualization, and a well-designed 1D-CNN 
model. The findings reveal the evident betterment of the 
current approaches, which illustrates the strength of the model 
and its feasibility. Overall, the work is a contribution to the 
development of intelligent wafer inspection systems and faster 
and more accurate defect detection that can potentially 
improve yield and reduce the cost of inspection as well as 
quality assurance in the manufacturing of semiconductors. 

C. Structure of the Paper 

The paper is structured as follows: Section II presents the 
related literature in the field of Wafer Defect Pattern 
Recognition. Section III describes the methods, supplies and 
processes. Section IV provides discussion, outcomes and 
analysis of the proposed system along with the experimental 
data. Section V outlines the last considerations and intentions.  

II. LITERATURE REVIEW  

In this section, Table I summarizes the literature review of 
recent works in Wafer Defect Pattern Recognition. It 
summarizes the problem, methodology, dataset, and the main 
findings, which were discussed in the reviewed works. 

Lee et al. (2025) initially introduced a novel feature 
extraction strategy that leverages features extracted by the 
CNN model, Density-based features, and Radon-based 
features, effectively capturing structural and spatial 
characteristics in wafer defect patterns. Second, propose an 
ensemble learning framework integrating multiple classifiers 
with optimized weighting mechanisms to enhance 
classification robustness. Third, provide empirical evidence 
demonstrating that the weighted soft voting approach achieves 
superior performance, attaining a classification accuracy of 
95.09% and an F1 score of 0.95%. These findings confirm the 

approach's efficacy in raising wafer defect classification 
reliability, which is essential for developing automated defect 
inspection in semiconductor production [14]. 

Ni et al. (2025) proposed a technique for augmenting data 
to increase the effectiveness of overlapping fault detection. 
This method effectively addresses the difficulty of identifying 
multipattern flaws in the semiconductor industry. 
Experimental findings, utilizing the universal defect dataset 
MixedWM38, demonstrate that the recommended method 
achieves an accuracy of 89.3% for overlapped type 
recognition, coupled with an impressive 89% mean average 
precision (mAP) for defect localization [15]. 

Kumar et al. (2024) suggested an innovative technique for 
semiconductor wafer surface defect assessment using deep 
convolutional neural networks. It is necessary to first construct 
a special structure for feature pyramid networks with atrous 
convolution (FPNAC) in order to extract features and produce 
feature maps. In order to generate region ideas, the feature 
plots must be sent into the region proposal network (RPN) in 
the second stage. The region suggestions are then linked to 
matching size utilizing the inputs of a three-branch Radial 
Basis Functional Neural Network (RBFNN) in order to 
accurately classify and separate the defects. The testing results 
show that the proposed RBFNN performs well overall, with 
Mean Pixel Accuracy (MPA) of 94.97% and Mean 
Intersection over Union (MIoU) of 90.06% [16]. 

Dubey et al. (2024) demonstrated initial work on wafer 
defect detection. The dataset is captured using an infrared (IR) 
camera, which makes it quick to analyze the bond interface for 
any abnormality. A ResNet-based artificial intelligence model 
for panoptic segmentation is then adapted by training on this 
data for defect identification and classification. ResNet-based 
model can identify and make a distribution plot of the defects 
based on the class defined with up to 95% accuracy for large-
size defects [17]. 

Batool et al. (2023) proposed a model that improves the 
discriminative feature learning of complex errors using 
attention-augmented convolutional neural networks 
(A2CNN). The A2CNN model emphasizes the channel and 
spatial dimensions. Additionally, the model employs a 
customized loss function to reduce misclassification and a 
global average pooling layer to enhance the network's 
generalization by avoiding overfitting. The A2CNN model is 
evaluated on the MixedWM38 wafer defect dataset using 10-
fold cross-validation. It performs exceptionally well, with 
accuracy, precision, recall, and F1-score values of 98.66%, 
99.0%, 98.55%, and 98.82%, respectively. The A2CNN 
model outperforms previous research by efficiently learning 
useful information for intricate mixed-type wafer faults [18]. 

Li et al. (2022) suggested the importance of root cause 
analysis in yield learning, may be performed using wafer 
failure pattern recognition. Test DNA was recently suggested 
as a way to enhance diagnostic resolution using wafer test 
data. Prior research on machine learning-based wafer failure 
pattern detection has shown good classification outcomes. In 
this letter, suggest using ensemble learning techniques and 
geographical information to improve classification accuracy. 
According to experimental findings, the suggested approach 
can increase accuracy by 8.9%[19].  
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A. Research Gaps 

Current literature usually utilizes complicated 
architectures or feature engineering on a large scale, making 
them difficult to scale or deploy in real-time. Most of the 

approaches do not have strong pre-processing and are unable 
to generalize patterns of defects. This necessitates the need to 
find a simpler, computationally efficient, and highly accurate 
framework that makes sure of a reliable classification of wafer 
defects to be depended on by the industry. 

TABLE I.  EXISTING LITERATURE STUDIES ON WAFER DEFECT PATTERN RECOGNITION 

Authors & Year Proposed Method Dataset Key Contributions Performance 

Lee et al. (2025) CNN feature extraction combined with 
density-based and Radon-based features; 

weighted soft voting ensemble 

Wafer defect 
dataset 

Integrated structural and spatial 
features with ensemble learning to 

improve robustness 

Accuracy: 95.09%, F1-
score: 0.95 

Ni et al. (2025) Data augmentation for overlapped defect 

recognition 

MixedWM38 Improved recognition of multi-pattern 

and overlapped defects 

Accuracy: 89.3%, 

mAP: 89% 

Kumar et al. 

(2024) 

FPN with atrous convolution (FPNAC) + 

RPN + RBFNN 

Semiconductor 

wafer images 

Joint detection, segmentation, and 

classification of defects 

MIoU: 90.06%, MPA: 

94.97% 

Dubey et al. 

(2024) 

ResNet-based panoptic segmentation using 

IR imaging 

IR wafer defect 

dataset 

Fast defect detection and classification 

using infrared imaging 

Accuracy: up to 95% 

(large defects) 

Batool et al. 

(2023) 

Attention-Augmented CNN (A2CNN) with 

focal loss 

MixedWM38 Enhanced channel and spatial feature 

learning for complex defects 

Accuracy: 98.66%, F1: 

98.82% 

Li et al. (2022) Spatial feature learning with ensemble 

algorithms 

Wafer test data Improved failure pattern recognition 

for root cause analysis 

Accuracy 

improvement: +8.9% 

III. METHODOLOGY 

The proposed methodology start by retrieving the WM-
811K wafer map data in Kaggle and first visualizing the 
information to understand fault trends. Subsequently, the data 
is processed by preprocessing, which involves cleaning and 
filtering of data, mapping of pixel values, converting the data 
to a different format and resizing the images. The model's 
generalization is enhanced by data augmentation once the 
processed data is separated into training (80%) and testing 
(20%) sets. Evaluation of the model's accuracy, precision, 
recall, f1-score performance, and loss following the training 
of a 1D CNN model using the processed data yields the final 
findings. The suggested methodology's flowchart is displayed 
in Figure 1.  

 

Fig. 1. Flowchart of Wafer Defect Pattern Recognition 

This section explains the following phases of the flowchart 
in a nutshell: 

A. Data Analysis and Visualization 

This study uses the WM-811K wafer dataset, which is the 
biggest wafer map dataset presently available to the public, for 
both testing and training. The dataset, which includes 811,457 

samples with 9 defect types, is taken from the actual wafer 
fabrication process; only around 21% of the samples have 
labels. The data visualizations are shown below: 

 

Fig. 2. Wafer Index Distribution 

The frequency distribution of the various index values is 
shown in Figure 2. The bar chart reflects fairly regular 
frequencies with slight variations, which are indicative of an 
equal distribution among indices. There is also a minor 
downward trend towards more index values, indicating minor 
fluctuation as opposed to a major imbalance. Overall, the 
number is representative of a well-distributed and steady 
dataset that can be analyzed. 

 

Fig. 3. Failure Type Frequency 

According to Figure 3, Edge-Ring is the most prevalent 
pattern, and it is followed by Edge-Loc and Centre, whereas 
Loc is moderately represented. The other patterns are quite 
rare with Near-full being close to extinction.  

Gathered WM-811K 
Database from Kaggle 

Data 
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Data Preprocessing 
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& filtering 
Pixel value 

mapping 
Format 
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Image resizing 
Data 

augmentation 

Data Splitting 

Train: 80% 
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 1D-CNN Model 
Performance 

Evaluation using 

accuracy, precision, 
recall, f1-score, loss Results  
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Fig. 4. Wafer Failure Type Pattern 

Figure 4 is an example of the spatial distribution of the 
various types of shapes emphasizing the various distinct 
shapes of defect, such as central clustering, rings, edge-
localized, edge-ring, localized pots, random scattering, linear 
scratch-like shapes and near-uniform coverage over the 
surface. 

B. Data Preparation 

Data processing is necessary to prepare the dataset for 
modelling and analysis in order to guarantee reliable and 
accurate results, particularly when handling differences in 
wafer map dimensions and defect pattern frequencies.  

• Data cleaning and filtering: Data has been cleaned 
and filtered to be left with only actual defect patterns 
by eliminating wafer maps, which had no defects, or 
had incorrect defect patterns (types of failure). This left 
25,519 valid images of wafer maps. 

• Pixel value mapping: A mapping of original 
grayscale wafer maps to three discrete intensity levels 
(0, 127, and 255), which display black, mid-gray, and 
white, was done to improve contrast and visualization. 
Equation (1) explains it: 

 𝑝𝑖𝑥𝑒𝑙 𝑣𝑎𝑙𝑢𝑒 = {
0
1
2

→ 0
→ 127
→ 255

  (1) 

• Format conversion: The grayscale images were 
transformed to RGB format such that they could be 
used in the DL models.  

• Image resizing: Image size is different between wafer 
maps; therefore, all images were re-sampled to 56 × 56 
with bicubic. 

• Data augmentation: Geometric and intensity-based 
transformations were used to create new training 
examples and enhance model generalization and 
reduce overfitting. 

C. Data Splitting 

To ensure an equitable representation of the various fault 
categories, the dataset was divided into training and testing 
sets, 80:20.  

D. Proposed Classification Framework: 1D-CNN 

To handle the 1-dimensional data, 1D-CNN is composed 
of activation functions, dropout layers, pooling layers, and 1-
dimensional convolution layers. The hyperparameters for 1D-
CNN are as follows: size of the filter, number of CNN layers, 
neurons in each layer, and subsampling factor of each layer 
[20]. The convolution layer is the basic mechanism by which 
a filter is applied to an input. Applying the filtering procedure 
repeatedly results in a feature map that highlights the 

particular attributes connected to the data points. Convolution 
is a linear process that uses a set of weights to limit the 
multiplication of inputs. In this instance, inputs are multiplied 
by the kernel, which is a single-dimensional array of weights. 
A feature map is produced by carrying out this procedure, 
which provides a distinct value for every pass. The ReLU 
activation function receives each value after the feature map 
has been computed. ReLU is a linear activation function that 
returns the same input if it is not negative, otherwise 
converting it to zero. The ReLU activation function solves the 
vanishing gradient issue, improves model performance, and 
speeds up learning from the training data. It is demonstrated 
using Equation (2) as follows: 

 𝑅(𝑧) = max (0, 𝑧) (2) 

Here, z is the input being received by the activation 
function, and 𝑅(𝑧) is the activation function's positive output. 

IV. PERFORMANCE EVALUATION AND RESULT ANALYSIS 

The experiment uses an AMD Ryzen 7 3700X 8-Core 
CPU with 16GB RAM running at 3.59 GHz and an NVIDIA 
GeForce RTX 2070 SUPER GPU running Windows 10. In a 
Python 3.10.9 environment, the DL frameworks utilized are 
TensorFlow 2.15.0 and Keras 2.15.0.  

A. Performance Evaluation 

There is continuous improvement in 1D-CNN models' 
classification performance for wafer map defect detection. 
This entails enhancing ROC analysis, f1-score, recall, 
accuracy, and precision. A confusion matrix depicts a concise 
evaluation of a deep learning model's performance using a 
specific dataset for testing purposes. It is extensively utilized 
to evaluate the effectiveness of classification models. For each 
input event, these models provide predictions of categorical 
labels. 

• Accuracy: Accuracy describes how well a model can 
classify every occurrence in a dataset. To calculate it, 
divide the total number of projections by the number 
of forecasts that are accurate. The accuracy is 
determined using Equation (3): 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝑇𝑁
 (3) 

• Precision: Precision is a measure of the proportion of 
the items that are or are expected to be positive. The 
mathematical formula in Equation (4) is presented in 
the following: 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (4) 

• Recall: The number of right answers that were truly 
positive is known as recall. The formula is given in 
Equation (5): 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (5) 

• F1-Score: The accuracy and recall harmonic means 
are taken to determine the F1 score. While accuracy 
quantifies recall counts, the number of real positive 
events that are accurately classified as positive, it is the 
proportion of correctly anticipated positive 
occurrences among all projected positive instances. 
The F1 score is calculated using in Equation (6): 

 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (6) 
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• Loss: The loss function calculates the discrepancy 
between the actual labels and the model's anticipated 
outputs, guiding the optimization process by 
minimizing prediction errors during training. 

where FP is TP is the number of correctly predicted 
positive instances, TN is the number of correctly predicted 
negative instances, FN is the number of positive cases that are 
mistakenly classified as negative, and the number of negative 
cases that are mistakenly classified as positive. 

B. Results Analysis 

Table II shows the result of the 1D-CNN model for wafer 
defect pattern recognition. The model achieved 99.0% 
accuracy and 99.0% AUC-ROC, indicating a high level of 
discriminative capacity. All three measures, precision, recall, 
and F1-score, were 97.0% and therefore showed balanced and 
credible defect classification. In general, the findings support 
the usefulness of the 1D-CNN method in automated 
inspection of wafer defects. 

TABLE II.  MODEL PERFORMANCE ON WAFER DEFECT PATTERN 

RECOGNITION  

Metrics 1D-CNN 

Accuracy 99.0 

Precision  97.0 

Recall  97.0 

F1-Score 97.0 

AUC-ROC 99.0 

 

Fig. 5. (a) Loss and (b) Accuracy Curves of the 1D-CNN  

The 1D-CNN model's accuracy curves over epochs are 
shown in Figure 5. The loss plot demonstrates effective 
learning and steady optimization with a steep decline in 
training and validation loss during the early epochs, followed 
by a smooth convergence to minimum values. 
Correspondingly, the accuracy plot shows a sharp rise in 
performance, with training and validation accuracies 
approaching 99%. The close alignment between training and 
validation curves in both plots highlights good generalization 
and the absence of overfitting. 

 

Fig. 6. Confusion Matrix of the 1D-CNN  

The proposed 1D-CNN model is characterized by a strong 
ability to classify, as indicated in Figure 6 below. The model 
has a high number of correct predictions with 401,200 true 
negatives and 393,857 true positives, and misclassifications 
are low. The prevailing diagonal structure attests to the 
soundness of the model and the good discrimination ability of 
Class 0 and Class 1. 

C. Comparative Analysis and Discussion  

Table III compares the performance of the different 
models that are used to recognize wafer defect patterns. The 
previous methods, like Feature Fusion CNN and LeNet, have 
moderate characteristics of 84.98 and 85.7 percent 
classification, respectively, whereas the more recent MFFP-
Net has a much higher percentage of 96.71. It is also 
competitive with other compared models because the 
proposed 1D-CNN model has the highest accuracy of 99.0 of 
recognition wafer defect patterns. 

TABLE III.  COMPARISON OF MODELS IN WAFER DEFECT PATTERN 

RECOGNITION 

Model Accuracy 

Feature Fusion CNN (2-layer, filter 16) [14] 84.98 

LeNet [21] 85.7 

MFFP-Net [22] 96.71 

1D-CNN 99.0 

D. Discussion 

The experimental results confirm that the suggested 1D-
CNN model works well for spotting wafer defect patterns. The 
model has high discriminative capability and balanced 
classification, quick and consistent convergence, and 
excellent generalization with no overfitting. The confusion 
table also confirms that there is a strong separation in classes 
with few misclassifications. Taken together, the suggested 
strategy is better than the current mechanisms, which 
highlights its appropriateness in terms of credible and 
workable automated wafer inspection. 

V. CONCLUSION AND FUTURE DIRECTION 

The map of defects on a wafer defines the distribution, 
kind, and wafer surface defect position, which form the basis 
of the defect detection state as they enable a methodical 
examination of the defect patterns. This paper has managed to 
achieve a successful deep learning-based solution to 
automatic Identifying Wafer Defect Patterns with a 1D 
Convolutional Neural Network. Using the extensive WM-
811K dataset, which is based on actual semiconductor 
manufacturing operations, the suggested framework can 
overcome the major issues associated with the imbalance of 
data, the difference in the size of wafer maps, and the low-
contrast defects. A comprehensive preparation workflow that 
includes data cleansing, mapping pixel intensities, RGB 
conversion, resizing of images, and data augmentation had an 
immensely important positive impact on the strength of the 
model and the quality of the data. Experimental findings 
indicate that 1D-CNN model has high classification 
performance, as its accuracy and AUC-ROC are 99.0 and 
99.0, respectively, and both the F1-score, recall, and accuracy 
scores are all balanced. The analysis of learning curves and 
confusion matrix also ensures that convergence is stable, there 
is great generalization, and minimal misclassification. The 
accuracy and dependability of the suggested model 
demonstrate its advantages over the current approaches. 
Together, the results confirm the usefulness of the 1D-CNN 
framework in the real-world defects inspection in the wafer, 

(a)Loss (a)Accuracy 
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which provides a scalable and precise method of quality 
control within the semiconductor production process. 

The future progress of the research will aim at 
investigating the ideas of hybrid deep learning architectures, 
including the fusion of CNNs with attention mechanisms, to 
enhance the classification accuracy. Also, the framework can 
be extended to multi-class defect classification and real-time 
industrial application, which will increase the applicability of 
this framework in semiconductor manufacturing. 
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