Journal of Global Research in Electronics and Communication

Volume 2, No. 2, February 2026

RESEARCH PAPER

High-Accuracy based on Deep Learning Techniques
for Pattern Recognition of Wafer Defect

Dr. Dinesh Yadav
Associate Professor
CSE Department
St. Andrews Institute of Technology & Management
Gurugram, Haryana, India
dinesh.yadav(@saitm.ac.in

Abstract—In semiconductor production, automated wafer
defect pattern detection is a crucial procedure that improves
product quality, yield, and efficiency. The paper introduces a
powerful deep learning-powered system of classifying wafer
defects based on a 1D-Convolutional Neural Network (1D-
CNN). The WM-811K wafer map dataset, the biggest publicly
available dataset based on actual wafer manufacturing
processes in industry, is used to assess the suggested approach.
Data analysis and visualization are first conducted
comprehensively regarding the distribution of wafer index,
frequencies of defects and patterns of spatial failures. A large
preprocessing pipeline is used to guarantee the reliability and
consistency of data, such as data cleaning, filtering out non-
defective and inaccurate samples of failure types, remapping
pixel values to grayscale, converting the grayscale to RGB,
image resizing and data augmentation. These procedures are
highly successful in raising dataset quality and model
generalization. The 1D-CNN model is trained to efficiently
acquire discriminative defect features after the filtered data is
divided into training and testing data. The following measures
are used to evaluate the model's performance: accuracy,
precision, recall, F1-score, loss, and AUC-ROC. Results of the
experiment indicate that the suggested 1D-CNN has 99.0%
accuracy and 99.0% AUC-ROC, which is superior to several
other cutting-edge methods. The results indicate the practical
applicability, soundness, and efficacy of the suggested
framework in automated inspection of defects in the wafer of
semiconductor manufacturing.
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I. INTRODUCTION

Wafers are regarded as a significant resource in the
semiconductor industry as they are the most important
semiconductor material. The two types of wafers are prime
wafers and test wafers [1]. The test wafers are further divided
into two categories: control (monitor) and counterfeit wafers.
Although integrated circuits are built using prime wafers, test
wafers are mostly used to maintain machinery and verify
parameters throughout the production process. However, only
test wafers can be recovered because the prime wafer was
converted into IC chips [2]. Increased reusability boosts the
IC foundries' profits and, consequently, their competence.
Recycling or reclaiming wafers is important since they are a
precious and finite resource that may drastically reduce
production costs [3]. In other words, Increased reusability
boosts the IC foundries' profits and, consequently, their
competence.
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Expert inspectors frequently carry out the manual early
detection of wafer surface flaws, which have drawbacks
including high cost, high subjectivity, low efficiency, and poor
precision that cannot meet the standards of modern
industrialized goods. Currently, machine vision-based defect
detection methods replace manual inspection in the field of
wafer inspection. In semiconductor production, wafer surface
defect detection is crucial to maintaining product quality and
has emerged as a key area of computer vision research [4].
Conventional machine vision-based fault detection techniques
frequently rely on labor-intensive human feature extraction.

Silicon wafers, which go through several steps to become
semiconductor components, are essential to the production of
semiconductors. The dynamics of the semiconductor industry
are linked to the expansion of the industry. Recent constraints
in the semiconductor chain have affected advanced and
mature wafer manufacturing capacity due to Increased safety
stockpiles and cautious supply-side expansion due to COVID-
19. The quality of wafers, the basic building block of
semiconductors, is decided after many stages of
manufacturing and is impacted by a number of variables, such
as staff, equipment, and timetable. Significant losses result
from defects that frequently go undetected until after wafers
are utilized by consumers [5]. The tolerance for metal
contamination declines with the complexity and size of
semiconductor components, potentially resulting in issues
with quality.

Preventive maintenance, reducing downtime, and
lowering maintenance costs all depend on artificial
intelligence [6] monitoring and prediction capabilities [7].
Corporate production efficiency and competitiveness are
enhanced by technology that blends Al and AOI [8] in the
highly competitive global market. The method is also
applicable to other high-precision production fields, including
aerospace manufacturing, biomedicine, and sophisticated
semiconductors [9][10][11]. This technology offers more
technical innovation. In recent years, DL inspection
methods[12] are embodied in CNN, which have become the
industry standard for identifying defects in semiconductor
production processes because to their high-speed automation,
low cost, high accuracy, and non-contact nature [13].

A. Motivation and Contribution of the Paper

Wafers are a rare and valuable material in the production
of semiconductor devices, and thus early and correct fault
detection is necessary to enhance the yield, minimize the
price, and facilitate the successful reuse of the wafers. Manual
inspection is inefficient, subjective, and expensive; and the
conventional machine vision approaches based on manually-
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designed features are not very robust to complex-shaped
defects. As the complexity of wafer and quality requirements
increases, defects can go unnoticed until late and lead to huge
losses. These issues inspire this study, as it aims at creating an
effective deep learning-based solution to automated wafer
defect pattern recognition in to improve inspection's precision,
dependability, and industry applicability. The main
contributions are:

e Analysis and collection of a large-scale WM-811K
dataset of wafer map (large scale) the largest publicly
accessible dataset of wafer production processes.

e Design of a powerful data preprocessing pipeline, such
as data cleaning, mapping pixel values, converting to
RGB, resizing of images, and data augmentation to
increase the model's resilience and the caliber of the
data.

e Design and implementation of an efficient 1D-CNN-—
based classification framework for automated wafer
defect pattern recognition.

e Large-scale performance evaluation based on a
number of parameters, including learning curves,
confusion matrix analysis, recall, accuracy, precision,
F1-score, loss, and AUC-ROC.

B. Significance of the Study

The proposed research is important because it introduces
a well-operating and trustworthy deep learning framework to
recognize the pattern of automated wafer defects on a large
scale of a realistic dataset. The proposed methodology shows
good generalization and is characterized by high classification
accuracy due to the use of rigorous data preprocessing,
meaningful visualization, and a well-designed 1D-CNN
model. The findings reveal the evident betterment of the
current approaches, which illustrates the strength of the model
and its feasibility. Overall, the work is a contribution to the
development of intelligent wafer inspection systems and faster
and more accurate defect detection that can potentially
improve yield and reduce the cost of inspection as well as
quality assurance in the manufacturing of semiconductors.

C. Structure of the Paper

The paper is structured as follows: Section II presents the
related literature in the field of Wafer Defect Pattern
Recognition. Section III describes the methods, supplies and
processes. Section IV provides discussion, outcomes and
analysis of the proposed system along with the experimental
data. Section V outlines the last considerations and intentions.

II. LITERATURE REVIEW

In this section, Table I summarizes the literature review of
recent works in Wafer Defect Pattern Recognition. It
summarizes the problem, methodology, dataset, and the main
findings, which were discussed in the reviewed works.

Lee et al. (2025) initially introduced a novel feature
extraction strategy that leverages features extracted by the
CNN model, Density-based features, and Radon-based
features, effectively capturing structural and spatial
characteristics in wafer defect patterns. Second, propose an
ensemble learning framework integrating multiple classifiers
with optimized weighting mechanisms to enhance
classification robustness. Third, provide empirical evidence
demonstrating that the weighted soft voting approach achieves
superior performance, attaining a classification accuracy of
95.09% and an F1 score of 0.95%. These findings confirm the
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approach's efficacy in raising wafer defect classification
reliability, which is essential for developing automated defect
inspection in semiconductor production [14].

Ni et al. (2025) proposed a technique for augmenting data
to increase the effectiveness of overlapping fault detection.
This method effectively addresses the difficulty of identifying
multipattern flaws in the semiconductor industry.
Experimental findings, utilizing the universal defect dataset
MixedWM38, demonstrate that the recommended method
achieves an accuracy of 89.3% for overlapped type
recognition, coupled with an impressive 89% mean average
precision (mAP) for defect localization [15].

Kumar et al. (2024) suggested an innovative technique for
semiconductor wafer surface defect assessment using deep
convolutional neural networks. It is necessary to first construct
a special structure for feature pyramid networks with atrous
convolution (FPNAC) in order to extract features and produce
feature maps. In order to generate region ideas, the feature
plots must be sent into the region proposal network (RPN) in
the second stage. The region suggestions are then linked to
matching size utilizing the inputs of a three-branch Radial
Basis Functional Neural Network (RBFNN) in order to
accurately classify and separate the defects. The testing results
show that the proposed RBFNN performs well overall, with
Mean Pixel Accuracy (MPA) of 94.97% and Mean
Intersection over Union (MIoU) of 90.06% [16].

Dubey et al. (2024) demonstrated initial work on wafer
defect detection. The dataset is captured using an infrared (IR)
camera, which makes it quick to analyze the bond interface for
any abnormality. A ResNet-based artificial intelligence model
for panoptic segmentation is then adapted by training on this
data for defect identification and classification. ResNet-based
model can identify and make a distribution plot of the defects
based on the class defined with up to 95% accuracy for large-
size defects [17].

Batool et al. (2023) proposed a model that improves the
discriminative feature learning of complex errors using
attention-augmented  convolutional — neural  networks
(A2CNN). The A2CNN model emphasizes the channel and
spatial dimensions. Additionally, the model employs a
customized loss function to reduce misclassification and a
global average pooling layer to enhance the network's
generalization by avoiding overfitting. The A2CNN model is
evaluated on the MixedWM38 wafer defect dataset using 10-
fold cross-validation. It performs exceptionally well, with
accuracy, precision, recall, and F1-score values of 98.66%,
99.0%, 98.55%, and 98.82%, respectively. The A2CNN
model outperforms previous research by efficiently learning
useful information for intricate mixed-type wafer faults [18].

Li et al. (2022) suggested the importance of root cause
analysis in yield learning, may be performed using wafer
failure pattern recognition. Test DNA was recently suggested
as a way to enhance diagnostic resolution using wafer test
data. Prior research on machine learning-based wafer failure
pattern detection has shown good classification outcomes. In
this letter, suggest using ensemble learning techniques and
geographical information to improve classification accuracy.
According to experimental findings, the suggested approach
can increase accuracy by 8.9%[19].
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A. Research Gaps

Current literature  usually utilizes complicated
architectures or feature engineering on a large scale, making
them difficult to scale or deploy in real-time. Most of the

approaches do not have strong pre-processing and are unable
to generalize patterns of defects. This necessitates the need to
find a simpler, computationally efficient, and highly accurate
framework that makes sure of a reliable classification of wafer
defects to be depended on by the industry.

TABLE I. EXISTING LITERATURE STUDIES ON WAFER DEFECT PATTERN RECOGNITION

Authors & Year Proposed Method Dataset Key Contributions Performance
Lee et al. (2025) CNN feature extraction combined with | Wafer  defect | Integrated structural and spatial | Accuracy: 95.09%, F1-
density-based and Radon-based features; | dataset features with ensemble learning to | score: 0.95
weighted soft voting ensemble improve robustness
Ni et al. (2025) Data augmentation for overlapped defect | MixedWM38 Improved recognition of multi-pattern | Accuracy: 89.3%,
recognition and overlapped defects mAP: 89%
Kumar et al. | FPN with atrous convolution (FPNAC) + | Semiconductor Joint detection, segmentation, and | MIoU: 90.06%, MPA:
(2024) RPN + RBFNN wafer images classification of defects 94.97%
Dubey et al. | ResNet-based panoptic segmentation using | IR wafer defect | Fast defect detection and classification | Accuracy: up to 95%
(2024) IR imaging dataset using infrared imaging (large defects)
Batool et al. | Attention-Augmented CNN (A2CNN) with | MixedWM38 Enhanced channel and spatial feature | Accuracy: 98.66%, F1:
(2023) focal loss learning for complex defects 98.82%
Li et al. (2022) Spatial feature learning with ensemble | Wafer test data Improved failure pattern recognition | Accuracy
algorithms for root cause analysis improvement: +8.9%

III. METHODOLOGY

The proposed methodology start by retrieving the WM-
811K wafer map data in Kaggle and first visualizing the
information to understand fault trends. Subsequently, the data
is processed by preprocessing, which involves cleaning and
filtering of data, mapping of pixel values, converting the data
to a different format and resizing the images. The model's
generalization is enhanced by data augmentation once the
processed data is separated into training (80%) and testing
(20%) sets. Evaluation of the model's accuracy, precision,
recall, f1-score performance, and loss following the training
of a 1D CNN model using the processed data yields the final
findings. The suggested methodology's flowchart is displayed
in Figure 1.

Gathered WM-811K
Database from Kaggle

—

Data Data Preprocessing
Visualization S
Data cleaning
Pixel value < .
Format |4 : & filterin
Conversion IERAS &
Data Splitting
Image resizing Data . "l%alg:ZS(;)'J;A)
augmentation sl 2076

Performance 1D-CNN Model

Evaluation using
accuracy, precision,

recall, fl-score, loss

Fig. 1. Flowchart of Wafer Defect Pattern Recognition

This section explains the following phases of the flowchart
in a nutshell:

A. Data Analysis and Visualization

This study uses the WM-811K wafer dataset, which is the
biggest wafer map dataset presently available to the public, for
both testing and training. The dataset, which includes 811,457

© JGREC 2026, All Rights Reserved

samples with 9 defect types, is taken from the actual wafer
fabrication process; only around 21% of the samples have
labels. The data visualizations are shown below:
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Fig. 2. Wafer Index Distribution

The frequency distribution of the various index values is
shown in Figure 2. The bar chart reflects fairly regular
frequencies with slight variations, which are indicative of an
equal distribution among indices. There is also a minor
downward trend towards more index values, indicating minor
fluctuation as opposed to a major imbalance. Overall, the
number is representative of a well-distributed and steady
dataset that can be analyzed.
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Fig. 3. Failure Type Frequency

According to Figure 3, Edge-Ring is the most prevalent
pattern, and it is followed by Edge-Loc and Centre, whereas
Loc is moderately represented. The other patterns are quite
rare with Near-full being close to extinction.
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Fig. 4. Wafer Failure Type Pattern

Figure 4 is an example of the spatial distribution of the
various types of shapes emphasizing the various distinct
shapes of defect, such as central clustering, rings, edge-
localized, edge-ring, localized pots, random scattering, linear
scratch-like shapes and near-uniform coverage over the
surface.

B. Data Preparation

Data processing is necessary to prepare the dataset for
modelling and analysis in order to guarantee reliable and
accurate results, particularly when handling differences in
wafer map dimensions and defect pattern frequencies.

e Data cleaning and filtering: Data has been cleaned
and filtered to be left with only actual defect patterns
by eliminating wafer maps, which had no defects, or
had incorrect defect patterns (types of failure). This left
25,519 valid images of wafer maps.

o Pixel value mapping: A mapping of original
grayscale wafer maps to three discrete intensity levels
(0, 127, and 255), which display black, mid-gray, and
white, was done to improve contrast and visualization.
Equation (1) explains it:

0—- 0
pixel value ={1-> 127 )
2—> 255

e Format conversion: The grayscale images were
transformed to RGB format such that they could be
used in the DL models.

o Image resizing: Image size is different between wafer
maps; therefore, all images were re-sampled to 56 X 56
with bicubic.

e Data augmentation: Geometric and intensity-based
transformations were used to create new training
examples and enhance model generalization and
reduce overfitting.

C. Data Splitting

To ensure an equitable representation of the various fault
categories, the dataset was divided into training and testing
sets, 80:20.

D. Proposed Classification Framework: 1D-CNN

To handle the 1-dimensional data, 1D-CNN is composed
of activation functions, dropout layers, pooling layers, and 1-
dimensional convolution layers. The hyperparameters for 1D-
CNN are as follows: size of the filter, number of CNN layers,
neurons in each layer, and subsampling factor of each layer
[20]. The convolution layer is the basic mechanism by which
a filter is applied to an input. Applying the filtering procedure
repeatedly results in a feature map that highlights the
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particular attributes connected to the data points. Convolution
is a linear process that uses a set of weights to limit the
multiplication of inputs. In this instance, inputs are multiplied
by the kernel, which is a single-dimensional array of weights.
A feature map is produced by carrying out this procedure,
which provides a distinct value for every pass. The ReLU
activation function receives each value after the feature map
has been computed. ReLU is a linear activation function that
returns the same input if it is not negative, otherwise
converting it to zero. The ReLU activation function solves the
vanishing gradient issue, improves model performance, and
speeds up learning from the training data. It is demonstrated
using Equation (2) as follows:

R(z) = max (0, 2) )

Here, z is the input being received by the activation
function, and R(z) is the activation function's positive output.

IV. PERFORMANCE EVALUATION AND RESULT ANALYSIS

The experiment uses an AMD Ryzen 7 3700X 8-Core
CPU with 16GB RAM running at 3.59 GHz and an NVIDIA
GeForce RTX 2070 SUPER GPU running Windows 10. In a
Python 3.10.9 environment, the DL frameworks utilized are
TensorFlow 2.15.0 and Keras 2.15.0.

A. Performance Evaluation

There is continuous improvement in 1D-CNN models'
classification performance for wafer map defect detection.
This entails enhancing ROC analysis, fl-score, recall,
accuracy, and precision. A confusion matrix depicts a concise
evaluation of a deep learning model's performance using a
specific dataset for testing purposes. It is extensively utilized
to evaluate the effectiveness of classification models. For each
input event, these models provide predictions of categorical
labels.

e Accuracy: Accuracy describes how well a model can
classify every occurrence in a dataset. To calculate it,
divide the total number of projections by the number
of forecasts that are accurate. The accuracy is
determined using Equation (3):

TP+TN

Accuracy = —
y TP+FP+TN+TN

3)

e Precision: Precision is a measure of the proportion of
the items that are or are expected to be positive. The
mathematical formula in Equation (4) is presented in
the following:

Precision = —— @)
TP+FP
e Recall: The number of right answers that were truly
positive is known as recall. The formula is given in
Equation (5):
P

T
Recall = ——
TP+FN

®)

e F1-Score: The accuracy and recall harmonic means
are taken to determine the F1 score. While accuracy
quantifies recall counts, the number of real positive
events that are accurately classified as positive, it is the
proportion of correctly anticipated positive
occurrences among all projected positive instances.
The F1 score is calculated using in Equation (6):

Precision*Recall
F1 — Score = 2 » 02200 (6)

Precision+Recall

25



Dr. D. Yadav, Journal of Global Research in Electronics and Communication, 2 (2) February 2026, 22-27

e Loss: The loss function calculates the discrepancy
between the actual labels and the model's anticipated
outputs, guiding the optimization process by
minimizing prediction errors during training.

where FP is TP is the number of correctly predicted
positive instances, TN is the number of correctly predicted
negative instances, FN is the number of positive cases that are
mistakenly classified as negative, and the number of negative
cases that are mistakenly classified as positive.

B. Results Analysis

Table II shows the result of the 1D-CNN model for wafer
defect pattern recognition. The model achieved 99.0%
accuracy and 99.0% AUC-ROC, indicating a high level of
discriminative capacity. All three measures, precision, recall,
and F1-score, were 97.0% and therefore showed balanced and
credible defect classification. In general, the findings support
the usefulness of the 1D-CNN method in automated
inspection of wafer defects.

TABLE II. MODEL PERFORMANCE ON WAFER DEFECT PATTERN
RECOGNITION
Metrics 1D-CNN
Accuracy 99.0
Precision 97.0
Recall 97.0
F1-Score 97.0
AUC-ROC 99.0

Training vs Validation Loss (1D-CNN)
0.09 1.0

—— Training Loss
—— Validation Loss 0.9

Training vs Validation Accuracy (1D-CNN)
0.08| \\
0.07
0.06

1 0.05
8

Accuracy

S 0,04
0.03
0.02

—— Training Accuracy

o001 —— Validation Accuracy

0.00
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Epoch Epoch

(a)Loss (a)Accuracy

Fig. 5. (a) Loss and (b) Accuracy Curves of the 1D-CNN

The 1D-CNN model's accuracy curves over epochs are
shown in Figure 5. The loss plot demonstrates effective
learning and steady optimization with a steep decline in
training and validation loss during the early epochs, followed
by a smooth convergence to minimum values.
Correspondingly, the accuracy plot shows a sharp rise in
performance, with training and validation accuracies
approaching 99%. The close alignment between training and
validation curves in both plots highlights good generalization
and the absence of overfitting.

1D-CNN Confusion Matrix
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'
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Fig. 6. Confusion Matrix of the 1D-CNN
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The proposed 1D-CNN model is characterized by a strong
ability to classify, as indicated in Figure 6 below. The model
has a high number of correct predictions with 401,200 true
negatives and 393,857 true positives, and misclassifications
are low. The prevailing diagonal structure attests to the
soundness of the model and the good discrimination ability of
Class 0 and Class 1.

C. Comparative Analysis and Discussion

Table III compares the performance of the different
models that are used to recognize wafer defect patterns. The
previous methods, like Feature Fusion CNN and LeNet, have
moderate characteristics of 84.98 and 85.7 percent
classification, respectively, whereas the more recent MFFP-
Net has a much higher percentage of 96.71. It is also
competitive with other compared models because the
proposed 1D-CNN model has the highest accuracy of 99.0 of
recognition wafer defect patterns.

TABLE III. COMPARISON OF MODELS IN WAFER DEFECT PATTERN

RECOGNITION
Model Accuracy
Feature Fusion CNN (2-layer, filter 16) [14] 84.98
LeNet [21] 85.7
MFFP-Net [22] 96.71
1D-CNN 99.0

D. Discussion

The experimental results confirm that the suggested 1D-
CNN model works well for spotting wafer defect patterns. The
model has high discriminative capability and balanced
classification, quick and consistent convergence, and
excellent generalization with no overfitting. The confusion
table also confirms that there is a strong separation in classes
with few misclassifications. Taken together, the suggested
strategy is better than the current mechanisms, which
highlights its appropriateness in terms of credible and
workable automated wafer inspection.

V. CONCLUSION AND FUTURE DIRECTION

The map of defects on a wafer defines the distribution,
kind, and wafer surface defect position, which form the basis
of the defect detection state as they enable a methodical
examination of the defect patterns. This paper has managed to
achieve a successful deep learning-based solution to
automatic Identifying Wafer Defect Patterns with a 1D
Convolutional Neural Network. Using the extensive WM-
811K dataset, which is based on actual semiconductor
manufacturing operations, the suggested framework can
overcome the major issues associated with the imbalance of
data, the difference in the size of wafer maps, and the low-
contrast defects. A comprehensive preparation workflow that
includes data cleansing, mapping pixel intensities, RGB
conversion, resizing of images, and data augmentation had an
immensely important positive impact on the strength of the
model and the quality of the data. Experimental findings
indicate that 1D-CNN model has high classification
performance, as its accuracy and AUC-ROC are 99.0 and
99.0, respectively, and both the F1-score, recall, and accuracy
scores are all balanced. The analysis of learning curves and
confusion matrix also ensures that convergence is stable, there
is great generalization, and minimal misclassification. The
accuracy and dependability of the suggested model
demonstrate its advantages over the current approaches.
Together, the results confirm the usefulness of the 1D-CNN
framework in the real-world defects inspection in the wafer,
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which provides a scalable and precise method of quality
control within the semiconductor production process.

The future progress of the research will aim at

investigating the ideas of hybrid deep learning architectures,
including the fusion of CNNs with attention mechanisms, to
enhance the classification accuracy. Also, the framework can
be extended to multi-class defect classification and real-time
industrial application, which will increase the applicability of
this framework in semiconductor manufacturing.
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