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Abstract—Wafer defects have become smaller and more 

complex, increasing the demand for accurate and real-time 

quality monitoring and control. Wafer surface flaws can be 

properly inspected to detect defects in the production process 

faster. Hence, it is essential to have defect checking in the 

fabrication of the wafer to foster high productivity, cost 

effectiveness, and ideal performance. This paper provides an 

efficient wafer defect inspection model based on a Graph Neural 

Network (GNN) on the Mixed-type Wafer Defect Dataset of 

Kaggle that comprises some 38,000 wafer maps in 38 different, 

normal, single-defect, and mixed-defect classes. The wafer maps 

in the form of 52 ×52 grids were first processed into matrix 

normalization, handled labels with label encoder, reshaping, 

and graph-based representation to maintain the spatial 

relationships between dies. Stratified sampling was used to 

divide the dataset into training, validation and testing sets, and 

data augmentation was used, which included rotation, flipping 

and cropping to improve robustness and generalization. The 

suggested GNN has used message-passing and global pooling, 

which captures complex spatial and relationship defects that are 

difficult to understand by normal CNN and machine learning 

methods. The evaluation of the performance was conducted 

based on accuracy, precision, recall, F1-score, and cross-entropy 

loss. The experimental results show that the proposed model 

offers a high classification accuracy of 97.25, a high level of 

precision (96.70%), recall (96.17%), and F1-score (96.44%). 

Comparative analysis reveals that the GNN is superior to the 

MobileNetV1, ResNet50 and SVM models. In general, the 

findings indicate the strength, consistency, and appropriateness 

of GNNs in complex multi-defect wafer inspection of 

semiconductor manufacturing. 

Keywords—Wafer defect inspection, Semiconductor 

manufacturing, Mixed-type defects, Wafer map analysis, Deep 
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I. INTRODUCTION  

With the design of semiconductor components for 
integration, an increasing number of integrated circuit 
components are being etched onto semiconductor wafers [1]. 
It is widely used in information and communication, 
automotive, and aerospace applications. To make electronic 
products portable and multifunctional, chips must be smaller 
and tighter, which makes it necessary to accommodate more 
components on the wafer surface [2][3]. During the 
manufacturing process [4][5]Cutting wafers can cause 
chipping and breakage of dies, and dust particles present in the 
clean room can also cause damage to the dies. 

Wafers are the most essential semiconductor materials [6], 
and therefore is considered to be a major resource in the 
semiconductor industry [7]. Wafers can be divided into two 
categories: prime wafers and test wafers. To detect surface 
defects on wafers, the traditional inspection method is manual 
inspection, which has a low sampling rate and poor real-time 
performance, and is highly influenced by experience and 
subjective factors. In the face of irregularly shaped and weakly 
imaged defects [8]Traditional algorithms suffer from low 
performance, high false detection rates, and high noise 
sensitivity. Computer vision is more effective in detecting 
defects such as wafer stains, collapses, and cracks, which 
typically arise from processes such as lithography 
misalignment, particle contamination, or dicing stress during 
wafer fabrication [9]. The use of computer vision significantly 
reduces labor costs and is more suitable for highly integrated 
wafers. Therefore, some researchers have used deep learning 
to automatically identify features of interest in images. 

Quality assurance [10][11] in manufacturing [12], 
particularly in injection molding, remains a challenge due to a 
variety of error types stemming from machine parameters, 
environmental influences, and batch inconsistencies. As these 
errors can be expensive to produce in real-world settings, 
synthetic training data offers a compelling solution for 
machine learning [13] models tasked with defect detection. 
The use of synthetic data for deep learning [14][15] has been 
expanding in various fields in recent years [16], yet the impact 
of rendering parameters on the quality of this data and the 
subsequent performance of AI [17][18][19][20] models is not 
well understood. 

Wafer characters are codes comprising numbers, letters, 
and symbols, and contain production information for each 
wafer. If an error in a wafer character recognition occurs 
during production, the information cannot be matched, 
significantly reducing production efficiency [21]. Therefore, 
improvement of the accuracy of the wafer character 
recognition method is significant for improving the 
production efficiency of the semiconductor industry [22]. 
Machine learning algorithms [23] can automatically learn the 
mapping relationship between features and results, and can 
efficiently complete classification without manual design of 
classification criteria. In recent years, deep learning 
algorithms have been used in wafer surface defect detection. 
Deep learning algorithms [24][25] can automatically extract 
image features and complete classification and localization, 
and have a high accuracy. Once the deep learning [26] model 
is built, detection personnel only need to input wafer images 
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into the model, without complex image processing steps. The 
detection method based on deep learning [27] can reduce the 
difficulty of algorithm development [28], and it has high 
detection performance, but this kind of method requires a lot 
of image data to learn the distribution of the defects. 

A. Motivation and Contributions 

The impetus of the study in question is the growing 
complexity and miniaturization of semiconductor wafers, 
which complicate the traditional manual and rule-of-thumb-
based inspection technologies, rendering these technologies 
inefficient, subjective, and incapable of detecting defects in 
real-time. The currently applied computer vision and deep 
learning technologies tend not to handle irregular, mixed, and 
weakly imaged defect patterns and need to be trained on large 
amounts of high-quality data. In order to overcome these 
issues, it is highly demanded that advanced models can 
capture effectively in the complex spatial relationship and 
enhance better inspection accuracy and minimize the reliance 
on manual intervention. GNNs provide an exciting way 
forward as it is a more natural and robust method of modeling 
wafer structures and encourages their use to the task of 
inspecting wafer defects in the modern semiconductor 
manufacturing process with accuracy, automation, and 
scalability. This research offers certain significant 
contributions that are discussed below:  

• Leveraged the Mixed-type Wafer Defect Dataset 
directly sourced from Kaggle. The dataset helped 
properly inspect wafer performance. 

• Implemented efficient preprocessing stages like matrix 
normalization, handling labels with label encoder and 
image reshaping.  

• The dataset underwent the data augmentation strategy 
to strengthen and generalize the model. 

• Implemented the deep learning Graph Neural Network 
model which effectively works on inspecting the 
performance of the wafer.  

• Measured the performance of the model using 
accuracy, precision, recall, f1-score and loss function.  

B. Novelty and Justification 

This study is novel in that it uses graph neural network to 
simulate mixed-type wafer defects, which effectively predicts 
the spatial and relationship relationships in wafer maps. This 
graphical model is more accurate and stronger in classification 
than other traditional methods, particularly with intricate 
defects. This work can be explained by the inability of 
conventional approaches to deal with multifaceted and 
composite as well as mixed patterns of wafer defects. Graph 
neural networks allow a better representation of spatial 
relationships, and the classification of wafer defects is more 
correct and reliable. 

C. Organization of the Study 

The study is structured as follows: Section II discusses 
about the existing studies related to Wafer Inspection 
performance. Section III details about the proposed 
methodology consisting of the dataset, preprocessing, model 
implementation and performance evaluation. Section IV 
outlines the result analysis and discussion. Lastly, Section V 
concludes the study and gives the future progress.  

II. LITERATURE REVIEW 

This part identifies the benchmarking research on 
performance in wafer inspection in the different fields. Table 
I highlights the methods, learning type, dataset uses, 
contributions and architecture. 

Mei et al. (2025) suggested a knowledge distillation 
training strategy is also implemented to equip the lightweight 
model with the learning capabilities of more complex network 
models, thus enhancing its mean average precision (mAP) and 
frames per second (FPS) in inspection tasks. Extensive 
experimental results demonstrate the effectiveness of their 
method with data volume robustness, which achieves 88.2% 
and 88.9% mAP@0.5 on the semiconductor wafer and chip 
datasets. Moreover, compared to SoTA methods, their 
framework shows superior performance, achieving a compact 
model size of only 27 MB and a detection speed of 108.4 FPS 
[29]. 

Cheng et al. (2025) proposed that a boundary focal loss 
(BFLoss) is utilized to constrain the training process. 
Experiments are carried out on several typical open industrial 
defect datasets and their own wafer surface defect datasets. 
The proposed network exhibits a more superior detection 
performance compared to the other classical traditional 
counterparts, achieving a high segmentation metric mIoU of 
80.71%, 87.05%, 91.23%, and 94.18% on the Kolektor SDD 
dataset, Magnetic Tile dataset, and two their own wafer 
surface defect datasets gathered from industrial production 
lines [30]. 

Xu et al. (2025) have incorporated and improved a semi-
supervised learning approach, Mutex Match, which introduces 
a dynamic, adaptive and class-wise high-confidence threshold 
mechanism and achieves excellent classification performance 
even with extremely scarce annotations-reaching 84.12% 
accuracy with only one labeled sample per class. It 
significantly improves pseudo-label utilization and reduces 
reliance on manual labeling. Experimental results show that 
MutexMatch outperforms multiple baseline methods in 
classification accuracy, demonstrating strong robustness and 
effectiveness [31]. 

Kumar et al. (2024) proposed a unique approach for 
semiconductor wafer surface defect inspection using deep 
convolutional neural networks. Initially, in order to extract 
features and create feature maps, an innovative structure for 
feature pyramid networks with atrous convolution (FPNAC) 
is designed. Secondly, region proposals are generated by 
feeding the feature plots into the region proposal network 
(RPN). In order to correctly categorize and segment the flaws, 
the region recommendations are finally associated to 
matching size by way of the inputs of a Radial Basis 
Functional Neural Network (RBFNN), which consists of three 
branches. The suggested RBFNN produces good overall 
performance, as evidenced by the experimental findings, 
which show Mean Intersection over Union (MIoU) of 90.06% 
and Mean Pixel Accuracy (MPA) of 94.97% [32]. 

Cheng et al. (2024) suggested a method different from 
previous methods; only defect-free images are required for the 
proposed method to achieve defect transfer detection. 
Experiments on real-world semiconductor wafer production 
lines show that the proposed method achieves mean 
intersection over union (mIoU) of 83.49% and 80.12% in 
defect transfer detection between two background pattern 
wafers. Furthermore, the excellent performance on other 
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classical industrial datasets demonstrates that the proposed 
network has great robustness to various defects and industrial 
scenarios [33]. 

Shi et al. (2023) article has studied this problem, and an 
adaptive coverage path planning (CPP) method for randomly 
scattering grains using an attention interface is proposed. The 
proposed randomly scattering waypoints method uses deep 
reinforcement learning (DRL) for automatic real-time path 
planning of the second detection. A soft attention interface 
accelerates the process with a less overlapped check. The 
experimental results demonstrate the efficiency of the 
proposed method in terms of less overlapping and fewer steps, 
and this method learns a better CPP strategy for wafer probing 
than programmed paths and other RL-based methods [34]. 

Tziolas et al. (2022) proposed a CNN-based model that 
utilizes various pre- and post-processing tools and is applied 
on the public but highly imbalanced industrial dataset WM-
811K. To handle imbalance, a methodology of treating each 
class individually is proposed by applying different 
processing techniques for down-sampling, splitting and data 

augmentation based on the number of samples. The proposed 
model achieves 95.3% accuracy and 93.78% macro F1-score 
and outperforms other models in the related literature 
concerning the identification of the majority of classes [35]. 

A. Research Gaps 

The major gaps are present even though there is an 
advancement in the inspection of the wafer. The vast majority 
of approaches are task-specific, and they do not have a 
common framework that will deal with the efficiency of 
detection, segmentation, and inspection together. The 
generalization between various wafer patterns, defects, and 
production conditions is not well developed. Several 
techniques use complicated models or customized losses, 
which lower scalability and applicability in real-time. Such 
problems as drastic imbalance of classes, latent flaws, and 
responsiveness to changing industrial conditions are not 
managed adequately, which is why lightweight, strong, and 
highly generalizable solutions to inspections are needed. 

TABLE I.  COMPARISON OF LEARNING PARADIGMS AND NETWORK ARCHITECTURES IN WAFER INSPECTION LITERATURE 

Reference Proposed Method Learning 

Paradigm 

Data Type Key Technical Contributions Network 

Architecture 

Mei et al. 

(2025) 

Lightweight defect 

detection framework 
with knowledge 

distillation 

Supervised 

learning with 
knowledge 

distillation 

Semiconductor 

wafer and chip 
inspection images 

Knowledge distillation transfers 

representation capability from complex 
teacher models to lightweight student 

networks, improving mAP and FPS with 

strong data volume robustness 

Lightweight CNN-

based detector 
(teacher–student 

architecture) 

Cheng et al. 

(2025) 

Boundary Focal Loss–

based defect 

segmentation network 

Supervised 

learning 

Industrial surface 

defect images and 

wafer surface 
datasets 

Boundary Focal Loss (BFLoss) constrains 

boundary learning and improves segmentation 

accuracy on fine-grained defects 

CNN-based 

segmentation 

network 

Xu et al. 

(2025) 

Mutex Match semi-

supervised 

classification 

framework 

Semi-

supervised 

learning 

Wafer defect 

classification data 

Dynamic, adaptive, class-wise high-

confidence thresholding enhances pseudo-

label quality under extremely limited 

annotations 

CNN-based 

classifier with 

Mutex Match 

strategy 

Kumar et al. 

(2024) 

FPNAC–RBFNN 

defect detection and 
segmentation model 

Supervised 

learning 

Semiconductor 

wafer surface 
images 

Atrous convolution–based feature pyramid 

(FPNAC) improves multi-scale feature 
extraction; RBFNN enables accurate defect 

categorization and segmentation 

FPN with atrous 

convolution + RPN 
+ three-branch 

RBFNN 

Cheng et al. 

(2024) 

Defect transfer 

detection using defect-
free training images 

Unsupervised 

/ One-class 
learning 

Real-world wafer 

production line 
images 

Requires only defect-free samples; achieves 

robust defect transfer detection across varying 
wafer background patterns 

CNN-based 

anomaly detection 
network 

Shi et al. 

(2023) 

Attention-based 

adaptive coverage path 
planning for wafer 

probing 

Deep 

reinforcement 
learning 

Wafer probing 

spatial data 

Random waypoint generation with soft 

attention reduces overlap and improves 
inspection efficiency in second-stage 

detection 

DRL agent with 

attention 
mechanism 

Tziolas et al. 
(2022) 

CNN-based wafer map 
defect classification 

with imbalance 

handling 

Supervised 
learning 

Wafer map images 
(WM-811K 

dataset) 

Class-wise processing with tailored 
augmentation and sampling strategies 

addresses severe class imbalance 

CNN with 
customized pre- and 

post-processing 

pipelines 

III. RESEARCH FRAMEWORK 

The suggested methodology starts with a mixed type of 
wafer defect dataset, which is provided by Kaggle and initially 
undergoes a preprocessing of data. This involves 
normalization, reshaping and data augmentation in order to 
enhance the quality of data and model robustness. The data 
that is processed is then divided into training (70), validation 
(15) and testing (15) sets. They are proposed and then trained 
using a graph neural network (GNN) on the training set, where 
tuning and overfitting are prevented through validation. The 
performance of the model is tested on the test set based on 
such metrics as the accuracy, the precision, the recall, the F1-
score, and loss, and the analysis of the results is carried out in 
order to determine the effectiveness of the approach. Figure 1 
shows the flowchart of the proposed methodology.  

 

Fig. 1. Flowchart of Wafer Inspection Performance 

Mixed-type wafer defect 

dataset from Kaggle 

Data Preprocessing 

Matrix 

Normalization 

Reshaping 

Data Split 

Train: 70% 

Validation: 15% 

Test: 15% 

Data Augmentation 

Proposed Model: Graph 

Neural Network  

Performance Measures: 

Accuracy, Precision, Recall, F1-

Score, Loss 
Result Analysis 

Label Encoding 
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The proposed methodology is illustrated through a 
flowchart, and each stage of the workflow is briefly described 
as follows: 

A. Dataset Analysis and Visualization 

In this paper, the authors utilize the Mixed-type Wafer 
Defect Dataset of Kaggle1, which consists of about 38,000 
images of wafer maps in 52×52 grids, and contains 38 classes 
of wafer map defects such as normal, single-defect, and 
mixed-defect patterns, which makes it a good dataset to test 
machine learning models in complex wafer inspection 
problems. 

 

Fig. 2. Wafer Index Distribution 

Figure 2 illustrates the number of samples under each 
defect class and the sample population is mostly even with 
insignificant differences in the prevalence of the defect 
classes. 

 

Fig. 3. Sample Wafer Map 

The spatial distribution of defects on the wafer surface is 
shown in Figure 3, which is an example wafer map; the pixel 
values of the wafer map which are normal die, defective, and 
blank show the spatial distribution of defects on the wafer. 

 

Fig. 4. Failure Type in Wafer 

 
1 https://www.kaggle.com/datasets/co1d7era/mixedtype-wafer-defect-

datasets 

Figure 4 presents examples of typical mixed-type wafer 
defect patterns, which demonstrate that combined defect 
structures are complicated and diverse in the dataset. 

B. Data Preprocessing 

Preprocessing entails converting raw data on wafer maps 
to a structured and standard form that can be used to train a 
model. Normalization of wafer map values, resizing to a 
consistent resolution, and turning wafer maps into graph 
representations that maintain spatial relations between dies are 
all part of preprocessing to give it meaningful input to the 
Graph Neural Network in this study. 

• Matrix Normalization: The input values were 
normalized to the range by dividing the value of each 
pixel in the input by 2 (the highest value in the original 
data).  

• Handling Labels using Label Encoder: In multi-
label classification problems, each instance can 
simultaneously have multiple labels. Many 
implementations convert each label into an 8-
dimension one-hot vector. 

• Image Reshaping: It consists of reshaping, where the 
52×52 maps were reshaped to incorporate a dimension 
of channel, giving it a shape (1, 52, 52) that could be 
fed to the architecture.  

C. Data Splitting 

The dataset was split into 70-15-15 for training, validation, 
and testing, respectively. Since all 38 classes were represented 
in the split’s, stratified sampling was used to ensure that there 
was a balanced representation of all the classes in the splits. 

D. Data Augmentation Strategy 

Mixed-type Wafer Defect Dataset already contains GAN-
generated samples to counteract the problem of class 
imbalance, but thus more data augmentation methods were 
used to further strengthen the models and generalization. 
Since patterns of wafer defects are geometrical rather than 
orientational, geometric augmentations have been used but the 
underlying pattern of defects retained. In particular, the 
augmentation pipeline consisted of random horizontal and 
vertical flips, small random rotations in the range of -10 to 10 
degrees and small random crops and subsequent resizing to 
the initial 52x52 resolution. These augmentations do not 
change defect semantics, but increase the diversity of patterns, 
allowing the Graph Neural Network to learn a larger set of 
invariant and discriminative spatial relationships between 
nodes in the wafer. 

These augmentation and pre-processing steps took care of 
optimum data quality in the model training and maintained the 
critical features of the defect pattern0073. 

E. Model Classification 

This study employed the Graph Neural Network to ensure 
the performance of the wafers. The model is classified below 
in detail. 

Graph Neural Networks (GNNs) [36] have enabled end-
to-end learning over relational data due to differentiable loss 
functions that can be trained with non-linear components like 
multi-layer perceptrons. Several real-world applications, such 
as fake news detection, physical simulations, traffic delay 
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estimation, and fraudulent transactions prediction, have GNNs 
as a crucial component. Graph classification is one of the most 
common downstream graph neural processing applications. 
While different GNN operators update node-level features via 
message-passing, the graph-level predictions are done by 
pooling the member nodes into a single unified representation. 
This pooling is either done by coarsening functions that 
gradually reduce the size of the graph or with the help of 
global pooling methods like average, max, or sum.  

The success of GNNs has also led to several attempts 
toward defining theoretical boundaries of what GNNs can and 
cannot do. The strengths and weaknesses of graph neural 
networks have been extensively evaluated in terms of their 
representation capabilities. Most studies have focused on the 
capability of message-passing networks using the Weisfeiler-
Lehman test, which is constrained by its limitations in 
distinguishing isomorphic graphs.  

Due to the fact that, as we have already mentioned, the 
graph can be understood as a generalization of an image, the 
so-called graph convolutional neural networks are usually 
used. In the classical approach, the convolutional layer 
performs the convolution operation of a filter, given in the 
form of a matrix, with the input image. The output of such a 
convolutional layer can be presented as Equations (1) and (2): 

 xout = σ (D̃−
1

2. Ã. D̃
1

2. xin. w)  (1) 

 𝑊ℎ𝑒𝑟𝑒 𝐷̃𝑖𝑖 = ∑ 𝐴̃𝑖𝑗  𝑗  (2) 

and σ(∙) stands for activation function, such as rectified linear 
unit (ReLU). 

F. Performance Measures 

The study used certain parameters to evaluate the 
performance of the proposed architecture. A detailed 
representation of classification outcomes across all the 
classes, revealing specific patterns of misclassifications. The 
performance parameters are accuracy, precision, recall, F1-
score, and loss function. These parameters are detailed below:  

• Accuracy: The proportion of correctly classified 
wafer maps across all classes.  

• Precision: The proportion of wafer maps classified as 
a particular defect type that actually belong to that 
class.  

• Recall: The proportion of wafer maps of a particular 
defect type that are correctly classified.  

• F1-score: The harmonic mean of precision and recall, 
providing a balanced measure of classification 
performance. 

• Loss Function: Cross-entropy loss, which is 
particularly effective for multi-class classification 
problems. 

Equations (3) to (6) show the mathematical formulation of 
the parameters.  

 Accuracy =  
TP+TN

TP+FP+TN+FN
  (3) 

 Precision =
TP

TP+FP
  (4) 

 Recall =
TP

TP=FN
  (5) 

 F1 − Score =
2TP

2TP+FP+FN
  (6) 

IV. RESULTS AND DISCUSSION 

The experimental setup utilized a high-performance 
computing environment consisting of five NVIDIA GeForce 
GTX 1080 GPUs, each with 8 GB of dedicated memory. The 
system was supported by 8 GB of DDR4 RAM and powered 
by an Intel® Core™ i7-8700B processor with 12 MB cache 
and a maximum clock speed of up to 4.60 GHz. 

A. Evaluated Results 

Table II summarizes the performance of the proposed 
Graph Neural Network (GNN) model on the wafer inspection 
task. The model receives a high classification accuracy of 
97.25, which depicts high overall predictive capacity. Besides 
that, the accuracy of 96.70% shows that the model is effective 
in identifying the defects with few false positives and the 
recall of 96.17% shows that the model identifies most of the 
defected wafers. The resulting F1-score of 96.44% proves a 
balanced performance of precision and recall, which indicates 
the strength and validity of the GNN-based method in the 
inspection of wafer defects. 

TABLE II.  MODEL PERFORMANCE ON WAFER INSPECTION 

PERFORMANCE 

Metrics Graph Neural Network 

Accuracy 97.25 

Precision 96.70 

Recall 96.17 

F1-Score 96.44 

 

Fig. 5. Training and Testing the Accuracy of the Model 

Figure 5 presents the training and testing accuracy of the 
50 epochs, and both curves quickly converge towards the 
beginning stages and reach high accuracy. The similarity in 
the result of both training and testing shows that the model is 
highly generalized and there is low overfitting, which shows 
that the model is stable and useful in inspection of the wafer. 

 

Fig. 6. Training and Testing Loss of the Model 
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Figure 6 demonstrates that the training and testing loss 
decreases rapidly at the initial epochs, and the values stabilize 
at a small level at the end. The nearly parallel relative to each 
other curves demonstrate that there is no overfitting or 
significant change in optimization when training the model of 
wafer inspection. 

 

Fig. 7. Confusion Matrix of the Model  

Figure 7 features the confusion matrix of classification of 
the wafer defects and the big diagonal dominance with small 
misclassifications, which is indicative of good classification 
and good discrimination between defect classes. 

B. Comparative Analysis 

This section provides comparisons of the various models 
with the proposed model. In Table III, a comparative analysis 
of multiple defect patterns on the use of various models is 
made on the inspection performance. The GNN proposed has 
the highest accuracy (97.25%), which is higher than 
MobileNetV1 and ResNet50, and also much higher than the 
SVM baseline. MobileNetV1 has a high precision and recall 
rate, whilst ResNet50 has a leveled performance with the 
metrics. Conversely, SVM has a considerably lower accuracy 
and F1-score, which implies that it cannot be used effectively 
with more complicated patterns of multiple defects. The 
findings indicate the better and stronger performance of the 
GNN in inspecting a multi-defect wafer. 

TABLE III.  COMPARATIVE EVALUATION OF INSPECTION PERFORMANCE 

OF MULTI-DEFECT PATTERNS 

Metrics MobileNetV1 

[37] 
ResNet50 [38] SVM [39] GNN 

Acc. 95.7 96.92 67.97 97.25 

Pre. 99.2 97.32 - 96.70 

Rec. 98.6 97.38 - 96.17 

F1-Sc. 98.8 97.31 68.0 96.44 

The achievement of the proposed Graph Neural Network 
(GNN) in the experimental results indicates that it can be 
effective and reliable in the inspection of wafer defects. The 
model has a high accuracy, high precision levels, high recall, 
and high F1-score, which signify that the model can detect the 
various defects pattern with high accuracy and minimal 
misclassification. The training and testing accuracy and loss 
curves verify that convergence, learning under stability and 
good generalization with insignificant over-fitting are 
realized. Additionally, there is good class-wise discrimination 
as revealed by the confusion matrix. Comparative analysis 
demonstrates that the GNN is always more effective than 
CNN-based models and traditional SVM approaches, 

underlining the appropriateness to the task of identifying the 
relationships of multi-defects in complex multi-objectives in 
the task of wafer inspection. 

V. CONCLUSION AND FUTURE PROGRESS 

The defects that appear on the wafer surface during the 
fabrication process of these wafers will seriously affect the 
wafer product quality and cause huge economic losses. 
Therefore, it is essential to study the problem of identifying 
defects on the wafer surface and adjusting the production line 
in time to improve the manufacturing yield. This paper has 
managed to illustrate the efficiency of a Graph Neural 
Network (GNN)-based model to carry out automated 
inspection of wafer defects with mixed-type wafer map data. 
The suggested technique is capable of storing important 
spatial and relational data of dies by modeling wafer maps in 
the form of graphs, allowing complex single and mixed defect 
patterns with critical information to be learned. Extensive 
preprocessing, normalization as well as data augmentation 
measures have led to better model robustness and 
generalization. According to the results of the experiment, the 
proposed GNN demonstrated a high level of performance with 
an accuracy of 97.25, precision of 96.70, recall of 96.17, and 
an F1-score of 96.44. It can be said that the GNN is reliable 
and balanced in its performance in terms of 38 defect classes. 
The results of the training and testing curves indicate that 
convergence is stable, and overfitting is minimal, and the 
confusion matrix indicates high discrimination of classes. The 
comparison analysis also confirms the effectiveness of the 
GNN over the CNN-based models like MobileNetV1 and 
ResNet50, and the traditional SVM solutions, specifically on 
the multi-defect patterns. In general, the results prove that 
GNNs can offer a strong and scalable solution to a 
complicated wafer inspection problem with substantial 
potential benefits in the context of quality control and yield 
optimization of semiconductor production. 

The future research will aim at applying the proposed 
GNN structure to real-time inspection of the wafer and large 
industrial populations. Defect interpretability, scalability and 
adaptability to the changing semiconductor manufacturing 
process can be further enhanced by incorporating attention 
mechanisms, heterogeneous graphs, and explainable AI 
techniques. 
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