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Abstract—Wafer defects have become smaller and more
complex, increasing the demand for accurate and real-time
quality monitoring and control. Wafer surface flaws can be
properly inspected to detect defects in the production process
faster. Hence, it is essential to have defect checking in the
fabrication of the wafer to foster high productivity, cost
effectiveness, and ideal performance. This paper provides an
efficient wafer defect inspection model based on a Graph Neural
Network (GNN) on the Mixed-type Wafer Defect Dataset of
Kaggle that comprises some 38,000 wafer maps in 38 different,
normal, single-defect, and mixed-defect classes. The wafer maps
in the form of 52 x52 grids were first processed into matrix
normalization, handled labels with label encoder, reshaping,
and graph-based representation to maintain the spatial
relationships between dies. Stratified sampling was used to
divide the dataset into training, validation and testing sets, and
data augmentation was used, which included rotation, flipping
and cropping to improve robustness and generalization. The
suggested GNN has used message-passing and global pooling,
which captures complex spatial and relationship defects that are
difficult to understand by normal CNN and machine learning
methods. The evaluation of the performance was conducted
based on accuracy, precision, recall, F1-score, and cross-entropy
loss. The experimental results show that the proposed model
offers a high classification accuracy of 97.25, a high level of
precision (96.70%), recall (96.17%), and F1-score (96.44%).
Comparative analysis reveals that the GNN is superior to the
MobileNetV1, ResNet50 and SVM models. In general, the
findings indicate the strength, consistency, and appropriateness
of GNNs in complex multi-defect wafer inspection of
semiconductor manufacturing.

Keywords—Wafer  defect inspection,  Semiconductor
manufacturing, Mixed-type defects, Wafer map analysis, Deep
learning, Quality control, Defect classification.

I. INTRODUCTION

With the design of semiconductor components for
integration, an increasing number of integrated circuit
components are being etched onto semiconductor wafers [1].
It is widely used in information and communication,
automotive, and aerospace applications. To make electronic
products portable and multifunctional, chips must be smaller
and tighter, which makes it necessary to accommodate more
components on the wafer surface [2][3]. During the
manufacturing process [4][5]Cutting wafers can cause
chipping and breakage of dies, and dust particles present in the
clean room can also cause damage to the dies.
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Wafers are the most essential semiconductor materials [6],
and therefore is considered to be a major resource in the
semiconductor industry [7]. Wafers can be divided into two
categories: prime wafers and test wafers. To detect surface
defects on wafers, the traditional inspection method is manual
inspection, which has a low sampling rate and poor real-time
performance, and is highly influenced by experience and
subjective factors. In the face of irregularly shaped and weakly
imaged defects [8]Traditional algorithms suffer from low
performance, high false detection rates, and high noise
sensitivity. Computer vision is more effective in detecting
defects such as wafer stains, collapses, and cracks, which
typically arise from processes such as lithography
misalignment, particle contamination, or dicing stress during
wafer fabrication [9]. The use of computer vision significantly
reduces labor costs and is more suitable for highly integrated
wafers. Therefore, some researchers have used deep learning
to automatically identify features of interest in images.

Quality assurance [10][11] in manufacturing [12],
particularly in injection molding, remains a challenge due to a
variety of error types stemming from machine parameters,
environmental influences, and batch inconsistencies. As these
errors can be expensive to produce in real-world settings,
synthetic training data offers a compelling solution for
machine learning [13] models tasked with defect detection.
The use of synthetic data for deep learning [14][15] has been
expanding in various fields in recent years [16], yet the impact
of rendering parameters on the quality of this data and the
subsequent performance of AI [17][18][19][20] models is not
well understood.

Wafer characters are codes comprising numbers, letters,
and symbols, and contain production information for each
wafer. If an error in a wafer character recognition occurs
during production, the information cannot be matched,
significantly reducing production efficiency [21]. Therefore,
improvement of the accuracy of the wafer character
recognition method is significant for improving the
production efficiency of the semiconductor industry [22].
Machine learning algorithms [23] can automatically learn the
mapping relationship between features and results, and can
efficiently complete classification without manual design of
classification criteria. In recent years, deep learning
algorithms have been used in wafer surface defect detection.
Deep learning algorithms [24][25] can automatically extract
image features and complete classification and localization,
and have a high accuracy. Once the deep learning [26] model
is built, detection personnel only need to input wafer images
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into the model, without complex image processing steps. The
detection method based on deep learning [27] can reduce the
difficulty of algorithm development [28], and it has high
detection performance, but this kind of method requires a lot
of image data to learn the distribution of the defects.

A. Motivation and Contributions

The impetus of the study in question is the growing
complexity and miniaturization of semiconductor wafers,
which complicate the traditional manual and rule-of-thumb-
based inspection technologies, rendering these technologies
inefficient, subjective, and incapable of detecting defects in
real-time. The currently applied computer vision and deep
learning technologies tend not to handle irregular, mixed, and
weakly imaged defect patterns and need to be trained on large
amounts of high-quality data. In order to overcome these
issues, it is highly demanded that advanced models can
capture effectively in the complex spatial relationship and
enhance better inspection accuracy and minimize the reliance
on manual intervention. GNNs provide an exciting way
forward as it is a more natural and robust method of modeling
wafer structures and encourages their use to the task of
inspecting wafer defects in the modern semiconductor
manufacturing process with accuracy, automation, and
scalability. This research offers certain significant
contributions that are discussed below:

e Leveraged the Mixed-type Wafer Defect Dataset
directly sourced from Kaggle. The dataset helped
properly inspect wafer performance.

o Implemented efficient preprocessing stages like matrix
normalization, handling labels with label encoder and
image reshaping.

e The dataset underwent the data augmentation strategy
to strengthen and generalize the model.

e Implemented the deep learning Graph Neural Network
model which effectively works on inspecting the
performance of the wafer.

e Measured the performance of the model using
accuracy, precision, recall, f1-score and loss function.

B. Novelty and Justification

This study is novel in that it uses graph neural network to
simulate mixed-type wafer defects, which effectively predicts
the spatial and relationship relationships in wafer maps. This
graphical model is more accurate and stronger in classification
than other traditional methods, particularly with intricate
defects. This work can be explained by the inability of
conventional approaches to deal with multifaceted and
composite as well as mixed patterns of wafer defects. Graph
neural networks allow a better representation of spatial
relationships, and the classification of wafer defects is more
correct and reliable.

C. Organization of the Study

The study is structured as follows: Section II discusses
about the existing studies related to Wafer Inspection
performance. Section III details about the proposed
methodology consisting of the dataset, preprocessing, model
implementation and performance evaluation. Section IV
outlines the result analysis and discussion. Lastly, Section V
concludes the study and gives the future progress.
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II. LITERATURE REVIEW

This part identifies the benchmarking research on
performance in wafer inspection in the different fields. Table
I highlights the methods, learning type, dataset uses,
contributions and architecture.

Mei et al. (2025) suggested a knowledge distillation
training strategy is also implemented to equip the lightweight
model with the learning capabilities of more complex network
models, thus enhancing its mean average precision (mAP) and
frames per second (FPS) in inspection tasks. Extensive
experimental results demonstrate the effectiveness of their
method with data volume robustness, which achieves 88.2%
and 88.9% mAP@0.5 on the semiconductor wafer and chip
datasets. Moreover, compared to SoTA methods, their
framework shows superior performance, achieving a compact
model size of only 27 MB and a detection speed of 108.4 FPS
[29].

Cheng et al. (2025) proposed that a boundary focal loss
(BFLoss) is utilized to constrain the training process.
Experiments are carried out on several typical open industrial
defect datasets and their own wafer surface defect datasets.
The proposed network exhibits a more superior detection
performance compared to the other classical traditional
counterparts, achieving a high segmentation metric mloU of
80.71%, 87.05%, 91.23%, and 94.18% on the Kolektor SDD
dataset, Magnetic Tile dataset, and two their own wafer
surface defect datasets gathered from industrial production
lines [30].

Xu et al. (2025) have incorporated and improved a semi-
supervised learning approach, Mutex Match, which introduces
a dynamic, adaptive and class-wise high-confidence threshold
mechanism and achieves excellent classification performance
even with extremely scarce annotations-reaching 84.12%
accuracy with only one labeled sample per class. It
significantly improves pseudo-label utilization and reduces
reliance on manual labeling. Experimental results show that
MutexMatch outperforms multiple baseline methods in
classification accuracy, demonstrating strong robustness and
effectiveness [31].

Kumar et al. (2024) proposed a unique approach for
semiconductor wafer surface defect inspection using deep
convolutional neural networks. Initially, in order to extract
features and create feature maps, an innovative structure for
feature pyramid networks with atrous convolution (FPNAC)
is designed. Secondly, region proposals are generated by
feeding the feature plots into the region proposal network
(RPN). In order to correctly categorize and segment the flaws,
the region recommendations are finally associated to
matching size by way of the inputs of a Radial Basis
Functional Neural Network (RBFNN), which consists of three
branches. The suggested RBFNN produces good overall
performance, as evidenced by the experimental findings,
which show Mean Intersection over Union (MIoU) of 90.06%
and Mean Pixel Accuracy (MPA) of 94.97% [32].

Cheng et al. (2024) suggested a method different from
previous methods; only defect-free images are required for the
proposed method to achieve defect transfer detection.
Experiments on real-world semiconductor wafer production
lines show that the proposed method achieves mean
intersection over union (mloU) of 83.49% and 80.12% in
defect transfer detection between two background pattern
wafers. Furthermore, the excellent performance on other
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classical industrial datasets demonstrates that the proposed
network has great robustness to various defects and industrial
scenarios [33].

Shi et al. (2023) article has studied this problem, and an
adaptive coverage path planning (CPP) method for randomly
scattering grains using an attention interface is proposed. The
proposed randomly scattering waypoints method uses deep
reinforcement learning (DRL) for automatic real-time path
planning of the second detection. A soft attention interface
accelerates the process with a less overlapped check. The
experimental results demonstrate the efficiency of the
proposed method in terms of less overlapping and fewer steps,
and this method learns a better CPP strategy for wafer probing
than programmed paths and other RL-based methods [34].

Tziolas et al. (2022) proposed a CNN-based model that
utilizes various pre- and post-processing tools and is applied
on the public but highly imbalanced industrial dataset WM-
811K. To handle imbalance, a methodology of treating each
class individually is proposed by applying different
processing techniques for down-sampling, splitting and data

augmentation based on the number of samples. The proposed
model achieves 95.3% accuracy and 93.78% macro F1-score
and outperforms other models in the related literature
concerning the identification of the majority of classes [35].

A. Research Gaps

The major gaps are present even though there is an
advancement in the inspection of the wafer. The vast majority
of approaches are task-specific, and they do not have a
common framework that will deal with the efficiency of
detection, segmentation, and inspection together. The
generalization between various wafer patterns, defects, and
production conditions is not well developed. Several
techniques use complicated models or customized losses,
which lower scalability and applicability in real-time. Such
problems as drastic imbalance of classes, latent flaws, and
responsiveness to changing industrial conditions are not
managed adequately, which is why lightweight, strong, and
highly generalizable solutions to inspections are needed.

TABLE I. COMPARISON OF LEARNING PARADIGMS AND NETWORK ARCHITECTURES IN WAFER INSPECTION LITERATURE

Reference Proposed Method Learning Data Type Key Technical Contributions Network
Paradigm Architecture
Mei et al. | Lightweight defect | Supervised Semiconductor Knowledge distillation transfers | Lightweight CNN-
(2025) detection  framework | learning with | wafer and chip | representation capability from complex | based detector
with knowledge | knowledge inspection images | teacher models to lightweight student | (teacher—student
distillation distillation networks, improving mAP and FPS with | architecture)
strong data volume robustness
Cheng et al. | Boundary Focal Loss— | Supervised Industrial surface | Boundary Focal Loss (BFLoss) constrains | CNN-based
(2025) based defect | learning defect images and | boundary learning and improves segmentation | segmentation
segmentation network wafer surface | accuracy on fine-grained defects network
datasets
Xu et al. | Mutex Match semi- | Semi- Wafer defect | Dynamic, adaptive, class-wise  high- | CNN-based
(2025) supervised supervised classification data | confidence thresholding enhances pseudo- | classifier with
classification learning label quality under extremely limited | Mutex Match
framework annotations strategy
Kumar et al. | FPNAC-RBFNN Supervised Semiconductor Atrous convolution-based feature pyramid | FPN with atrous
(2024) defect detection and | learning wafer surface | (FPNAC) improves multi-scale feature | convolution + RPN
segmentation model images extraction; RBFNN enables accurate defect | + three-branch
categorization and segmentation RBFNN
Cheng et al. | Defect transfer | Unsupervised | Real-world wafer | Requires only defect-free samples; achieves | CNN-based
(2024) detection using defect- | /  One-class | production  line | robust defect transfer detection across varying | anomaly detection
free training images learning images wafer background patterns network
Shi et al. | Attention-based Deep Wafer  probing | Random waypoint generation with soft | DRL agent with
(2023) adaptive coverage path | reinforcement | spatial data attention reduces overlap and improves | attention
planning for wafer | learning inspection  efficiency in  second-stage | mechanism
probing detection
Tziolas et al. | CNN-based wafer map | Supervised Wafer map images | Class-wise  processing  with  tailored | CNN with
(2022) defect classification | learning (WM-811K augmentation and sampling strategies | customized pre- and
with imbalance dataset) addresses severe class imbalance post-processing
handling pipelines

III. RESEARCH FRAMEWORK

The suggested methodology starts with a mixed type of
wafer defect dataset, which is provided by Kaggle and initially
undergoes a preprocessing of data. This involves
normalization, reshaping and data augmentation in order to
enhance the quality of data and model robustness. The data
that is processed is then divided into training (70), validation
(15) and testing (15) sets. They are proposed and then trained
using a graph neural network (GNN) on the training set, where
tuning and overfitting are prevented through validation. The
performance of the model is tested on the test set based on
such metrics as the accuracy, the precision, the recall, the F1-
score, and loss, and the analysis of the results is carried out in
order to determine the effectiveness of the approach. Figure 1
shows the flowchart of the proposed methodology.
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Fig. 1. Flowchart of Wafer Inspection Performance
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The proposed methodology is illustrated through a
flowchart, and each stage of the workflow is briefly described
as follows:

A. Dataset Analysis and Visualization

In this paper, the authors utilize the Mixed-type Wafer
Defect Dataset of Kagglel, which consists of about 38,000
images of wafer maps in 52x52 grids, and contains 38 classes
of wafer map defects such as normal, single-defect, and
mixed-defect patterns, which makes it a good dataset to test
machine learning models in complex wafer inspection
problems.
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Fig. 2. Wafer Index Distribution

Figure 2 illustrates the number of samples under each
defect class and the sample population is mostly even with
insignificant differences in the prevalence of the defect
classes.

0 10 20 30 40 50
Fig. 3. Sample Wafer Map

The spatial distribution of defects on the wafer surface is
shown in Figure 3, which is an example wafer map; the pixel
values of the wafer map which are normal die, defective, and
blank show the spatial distribution of defects on the wafer.

Fig. 4. Failure Type in Wafer

Figure 4 presents examples of typical mixed-type wafer
defect patterns, which demonstrate that combined defect
structures are complicated and diverse in the dataset.

B. Data Preprocessing

Preprocessing entails converting raw data on wafer maps
to a structured and standard form that can be used to train a
model. Normalization of wafer map values, resizing to a
consistent resolution, and turning wafer maps into graph
representations that maintain spatial relations between dies are
all part of preprocessing to give it meaningful input to the
Graph Neural Network in this study.

e Matrix Normalization: The input values were
normalized to the range by dividing the value of each
pixel in the input by 2 (the highest value in the original
data).

e Handling Labels using Label Encoder: In multi-
label classification problems, each instance can
simultaneously have multiple labels. Many
implementations convert each label into an 8-
dimension one-hot vector.

e Image Reshaping: It consists of reshaping, where the
52x52 maps were reshaped to incorporate a dimension
of channel, giving it a shape (1, 52, 52) that could be
fed to the architecture.

C. Data Splitting

The dataset was split into 70-15-15 for training, validation,
and testing, respectively. Since all 38 classes were represented
in the split’s, stratified sampling was used to ensure that there
was a balanced representation of all the classes in the splits.

D. Data Augmentation Strategy

Mixed-type Wafer Defect Dataset already contains GAN-
generated samples to counteract the problem of class
imbalance, but thus more data augmentation methods were
used to further strengthen the models and generalization.
Since patterns of wafer defects are geometrical rather than
orientational, geometric augmentations have been used but the
underlying pattern of defects retained. In particular, the
augmentation pipeline consisted of random horizontal and
vertical flips, small random rotations in the range of -10 to 10
degrees and small random crops and subsequent resizing to
the initial 52x52 resolution. These augmentations do not
change defect semantics, but increase the diversity of patterns,
allowing the Graph Neural Network to learn a larger set of
invariant and discriminative spatial relationships between
nodes in the wafer.

These augmentation and pre-processing steps took care of
optimum data quality in the model training and maintained the
critical features of the defect pattern0073.

E. Model Classification

This study employed the Graph Neural Network to ensure
the performance of the wafers. The model is classified below
in detail.

Graph Neural Networks (GNNs) [36] have enabled end-
to-end learning over relational data due to differentiable loss
functions that can be trained with non-linear components like
multi-layer perceptrons. Several real-world applications, such
as fake news detection, physical simulations, traffic delay

! https://www.kaggle.com/datasets/co1d7era/mixedtype-wafer-defect-
datasets
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estimation, and fraudulent transactions prediction, have GNNs
as a crucial component. Graph classification is one of the most
common downstream graph neural processing applications.
While different GNN operators update node-level features via
message-passing, the graph-level predictions are done by
pooling the member nodes into a single unified representation.
This pooling is either done by coarsening functions that
gradually reduce the size of the graph or with the help of
global pooling methods like average, max, or sum.

The success of GNNs has also led to several attempts
toward defining theoretical boundaries of what GNNs can and
cannot do. The strengths and weaknesses of graph neural
networks have been extensively evaluated in terms of their
representation capabilities. Most studies have focused on the
capability of message-passing networks using the Weisfeiler-
Lehman test, which is constrained by its limitations in
distinguishing isomorphic graphs.

Due to the fact that, as we have already mentioned, the
graph can be understood as a generalization of an image, the
so-called graph convolutional neural networks are usually
used. In the classical approach, the convolutional layer
performs the convolution operation of a filter, given in the
form of a matrix, with the input image. The output of such a
convolutional layer can be presented as Equations (1) and (2):

~ 1 - 1
Xout = O (D 2, A D2.xin.w) D
Where Eii = Z] Al] (2)

and o(+) stands for activation function, such as rectified linear
unit (ReLU).

F. Performance Measures

The study used certain parameters to evaluate the
performance of the proposed architecture. A detailed
representation of classification outcomes across all the
classes, revealing specific patterns of misclassifications. The
performance parameters are accuracy, precision, recall, F1-
score, and loss function. These parameters are detailed below:

e Accuracy: The proportion of correctly classified
wafer maps across all classes.

e Precision: The proportion of wafer maps classified as
a particular defect type that actually belong to that
class.

e Recall: The proportion of wafer maps of a particular
defect type that are correctly classified.

e Fl-score: The harmonic mean of precision and recall,
providing a balanced measure of classification
performance.

e Loss Function: Cross-entropy loss, which is
particularly effective for multi-class classification
problems.

Equations (3) to (6) show the mathematical formulation of
the parameters.

TP+TN
Accuracy = o0t s @
Precision = —— @

TP+FP

TP
Recall = TPoFN %)
F1 — Score = — ©
2TP+FP+FN
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IV. RESULTS AND DISCUSSION

The experimental setup utilized a high-performance
computing environment consisting of five NVIDIA GeForce
GTX 1080 GPUs, each with 8 GB of dedicated memory. The
system was supported by 8 GB of DDR4 RAM and powered
by an Intel® Core™ i7-8700B processor with 12 MB cache
and a maximum clock speed of up to 4.60 GHz.

A. Evaluated Results

Table II summarizes the performance of the proposed
Graph Neural Network (GNN) model on the wafer inspection
task. The model receives a high classification accuracy of
97.25, which depicts high overall predictive capacity. Besides
that, the accuracy of 96.70% shows that the model is effective
in identifying the defects with few false positives and the
recall of 96.17% shows that the model identifies most of the
defected wafers. The resulting F1-score of 96.44% proves a
balanced performance of precision and recall, which indicates
the strength and validity of the GNN-based method in the
inspection of wafer defects.

TABLE II. MODEL PERFORMANCE ON WAFER INSPECTION
PERFORMANCE
Metrics Graph Neural Network
Accuracy 97.25
Precision 96.70
Recall 96.17
F1-Score 96.44

Fig. 5. Training and Testing the Accuracy of the Model

Figure 5 presents the training and testing accuracy of the
50 epochs, and both curves quickly converge towards the
beginning stages and reach high accuracy. The similarity in
the result of both training and testing shows that the model is
highly generalized and there is low overfitting, which shows
that the model is stable and useful in inspection of the wafer.

— ey Lot

Fig. 6. Training and Testing Loss of the Model
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Figure 6 demonstrates that the training and testing loss
decreases rapidly at the initial epochs, and the values stabilize
at a small level at the end. The nearly parallel relative to each
other curves demonstrate that there is no overfitting or
significant change in optimization when training the model of
wafer inspection.

Confusion Matrix far wafer defect

|

Fig. 7. Confusion Matrix of the Model

Figure 7 features the confusion matrix of classification of
the wafer defects and the big diagonal dominance with small
misclassifications, which is indicative of good classification
and good discrimination between defect classes.

B. Comparative Analysis

This section provides comparisons of the various models
with the proposed model. In Table III, a comparative analysis
of multiple defect patterns on the use of various models is
made on the inspection performance. The GNN proposed has
the highest accuracy (97.25%), which is higher than
MobileNetV1 and ResNet50, and also much higher than the
SVM baseline. MobileNetV1 has a high precision and recall
rate, whilst ResNet50 has a leveled performance with the
metrics. Conversely, SVM has a considerably lower accuracy
and F1-score, which implies that it cannot be used effectively
with more complicated patterns of multiple defects. The
findings indicate the better and stronger performance of the
GNN in inspecting a multi-defect wafer.

TABLE III. COMPARATIVE EVALUATION OF INSPECTION PERFORMANCE
OF MULTI-DEFECT PATTERNS

Metrics MobileNetV1 ResNetS0 [38] | SVM [39] GNN
[37]

Acc. 95.7 96.92 67.97 97.25

Pre. 99.2 97.32 - 96.70

Rec. 98.6 97.38 - 96.17

FI1-Sc. 98.8 97.31 68.0 96.44

The achievement of the proposed Graph Neural Network
(GNN) in the experimental results indicates that it can be
effective and reliable in the inspection of wafer defects. The
model has a high accuracy, high precision levels, high recall,
and high F1-score, which signify that the model can detect the
various defects pattern with high accuracy and minimal
misclassification. The training and testing accuracy and loss
curves verify that convergence, learning under stability and
good generalization with insignificant over-fitting are
realized. Additionally, there is good class-wise discrimination
as revealed by the confusion matrix. Comparative analysis
demonstrates that the GNN is always more effective than
CNN-based models and traditional SVM approaches,

© JGREC 2026, All Rights Reserved

underlining the appropriateness to the task of identifying the
relationships of multi-defects in complex multi-objectives in
the task of wafer inspection.

V. CONCLUSION AND FUTURE PROGRESS

The defects that appear on the wafer surface during the
fabrication process of these wafers will seriously affect the
wafer product quality and cause huge economic losses.
Therefore, it is essential to study the problem of identifying
defects on the wafer surface and adjusting the production line
in time to improve the manufacturing yield. This paper has
managed to illustrate the efficiency of a Graph Neural
Network (GNN)-based model to carry out automated
inspection of wafer defects with mixed-type wafer map data.
The suggested technique is capable of storing important
spatial and relational data of dies by modeling wafer maps in
the form of graphs, allowing complex single and mixed defect
patterns with critical information to be learned. Extensive
preprocessing, normalization as well as data augmentation
measures have led to better model robustness and
generalization. According to the results of the experiment, the
proposed GNN demonstrated a high level of performance with
an accuracy of 97.25, precision of 96.70, recall of 96.17, and
an Fl-score of 96.44. It can be said that the GNN is reliable
and balanced in its performance in terms of 38 defect classes.
The results of the training and testing curves indicate that
convergence is stable, and overfitting is minimal, and the
confusion matrix indicates high discrimination of classes. The
comparison analysis also confirms the effectiveness of the
GNN over the CNN-based models like MobileNetV1 and
ResNet50, and the traditional SVM solutions, specifically on
the multi-defect patterns. In general, the results prove that
GNNs can offer a strong and scalable solution to a
complicated wafer inspection problem with substantial
potential benefits in the context of quality control and yield
optimization of semiconductor production.

The future research will aim at applying the proposed
GNN structure to real-time inspection of the wafer and large
industrial populations. Defect interpretability, scalability and
adaptability to the changing semiconductor manufacturing
process can be further enhanced by incorporating attention
mechanisms, heterogeneous graphs, and explainable Al
techniques.
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